• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for matematiske fag
  • View Item
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for matematiske fag
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Constructing Certain Spectra from Ad Theories

Annfelt Moe, Haaken
Doctoral thesis
View/Open
616486_FULLTEXT01.pdf (Locked)
URI
http://hdl.handle.net/11250/259140
Date
2012
Metadata
Show full item record
Collections
  • Institutt for matematiske fag [1396]
Abstract
In this dissertation some ad theories and their relation to certain spectra are investigated. Quinn defined bordism-type theories, semisimplicial constructions with a geometric realization that is an Ω ­-spectrum. Here we study Laures and McClure’s ad theories, a strengthening of the axioms of the bordism-type theories. Associated to an ad theory is a Quinn spectrum, an Ω­-spectrum that is the geometric realization of a semisiplicial set coming fromthe ad theory.

The goal of the dissertation is to show equivalences between on one hand the Thom spectrum MSO and the Madsen-Tillmann spectra MT+ (d) and on the other hand some constructed Quinn spectra. This is done working through the singular complex of MSO and MT+ (d).

Transversality is important here. The final step of the comparison of spectra is done by comparing the subset of the singular complex that is transversal to the 0- section of the spaces of the spectra MSO and MT+ (d) to the semisimplicial sets coming from the ad theories. For MSO, that this is an equivalence is a simplicial version of part of Rene Thoms proof about the stable homotopy of MSO.

The ad theories are functors from index categories that come from ball complexes, to a target category we construct. This target category is built out of embedded smooth compactmanifolds with corners.
Publisher
Norges teknisk-naturvitenskapelige universitet, Fakultet for informasjonsteknologi, matematikk og elektroteknikk, Institutt for matematiske fag
Series
Doktoravhandlinger ved NTNU, 1503-8181; 2012:93

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit