• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for matematiske fag
  • View Item
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for matematiske fag
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ensemble Kalman Filter on the Brugge Field

Vo, Paul Vuong
Master thesis
Thumbnail
View/Open
566965_FULLTEXT01.pdf (30.96Mb)
566965_COVER01.pdf (184.0Kb)
URI
http://hdl.handle.net/11250/259068
Date
2012
Metadata
Show full item record
Collections
  • Institutt for matematiske fag [1433]
Abstract
The purpose of modeling a petroleum reservoir consists of finding the underlying reservoir properties based on production data, seismic and other available data. In recent years, progress in technology has made it possible to extract large amount of data from the reservoir frequently. Hence, mathematical models that can rapidly characterize the reservoir as new data become available gained much interest. In this thesis we present a formulation of the first order Hidden Markov Model (HMM) that fits into the description of a reservoir model under production. We use a recursive technique that gives the theoretical solution to the reservoir characterization problem. Further, we introduce the Kalman Filter which serves as the exact solution when certain assumptions about the HMM are made. However, these assumptions are not valid when describing the process of a reservoir under production. Thus, we introduce the Ensemble Kalman Filter (EnKF) which has been shown to give an approximate solution to the reservoir characterization problem. However, the EnKF is depending on multiple realizations from the reservoir model which we obtain from the reservoir production simulator Eclipse. When the number of realizations are kept small for computational purposes, the EnKF has been shown to possibly give unreliable results. Hence, we apply a shrinkage regression technique (DR-EnKF) and a localization technique (Loc-EnKF) that are able to correct the traditional EnKF. Both the traditional EnKF and these corrections are tested on a synthetic reservoir case called the Brugge Field. The results indicate that the traditional EnKF suffers from ensemble collapse when the ensemble size is small. This results in small and unreliable prediction uncertainty in the model variables. The DR-EnKF improves the EnKF in terms of root mean squared error (RMSE) for a small ensemble size, while the Loc-EnKF makes considerable improvements compared to the EnKF and produces model variables that seems reasonable.
Publisher
Institutt for matematiske fag

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit