• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for matematiske fag
  • Vis innførsel
  •   Hjem
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for matematiske fag
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modeling of a Catalytic Counter - Current Chemical Reactor

Kebedow, Kiros Gebrearegawi
Master thesis
Åpne
447279_FULLTEXT01.pdf (Låst)
447279_COVER01.pdf (Låst)
Permanent lenke
http://hdl.handle.net/11250/258939
Utgivelsesdato
2011
Metadata
Vis full innførsel
Samlinger
  • Institutt for matematiske fag [1769]
Sammendrag
AbstractThis thesis considers modeling and analyzing aspects of a counter-current, catalytic,moving bed, chemical reactor, based on a study in the book Mathematical ModelingTechniques by R. Aris. The final reaction kinetics equations have turned out tobe mathematically equivalent to the Michaelis-Menten system, treated in detailin another famous book, Mathematics Applied to Deterministic Problems in theNatural Sciences by C. C. Lin and L. A. Segel.The first part of the thesis discusses modeling aspect such as catalytic reactionkinetics, transport in the reactor and conservation laws. In its most general form, themodel leads to a complex system of partial convection/reaction/diffusion equations.The analysis continues with simplification, scaling and qualitative behavior, whichleads to several situations of regular as well as singular perturbation. The analysisalso includes a revised model with permanent poisoning of the catalyst which wasnot treated in the book above. The perturbation solutions are compared to numericalsolutions obtained by the MatlabTM ODE solver ODE45.The last part is considering a simplified one-dimensional reactor in space whichturned out to lead to some numerical challenges.When comparing the present analysis to the books above, is clear that theirperturbation analysis is based on an inconsistent scaling. The analysis in Lin andSegel does not apply to the situation they describe, and this also seems to be the casefor the analysis in Aris. However, time limitations has prevented a deeper analysisof these aspects.
Utgiver
Institutt for matematiske fag

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit