• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for matematiske fag
  • View Item
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for matematiske fag
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Auslander-Reiten components containing modules of finite complexity

Toft, Tea
Master thesis
Thumbnail
View/Open
427899_COVER01.pdf (46.84Kb)
427899_FULLTEXT01.pdf (897.5Kb)
URI
http://hdl.handle.net/11250/258876
Date
2011
Metadata
Show full item record
Collections
  • Institutt for matematiske fag [1793]
Abstract
Let R be a connected selfinjective Artin algebra. We prove that any almost split sequence ending at an Omega-perfect R-module of finite complexity has at most four non-projective summands in a chosen decomposition of the middle term into indecomposable modules. Moreover, we show that a chosen decomposition into indecomposable modules of the middle term of an almost split sequence ending at an R-module of complexity 1 lying in a regular component of the Auslander-Reiten quiver has at most two summands. Furthermore, we prove that the regular component is of type ZA_{infinity} or ZA_{infinity}/. We use this to study modules with eventually constant and eventually periodic Betti numbers.
Publisher
Institutt for matematiske fag

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit