• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Multibeam-Based SLAM Algorithm for Iceberg Mapping Using AUVs

Norgren, Petter; Skjetne, Roger
Journal article, Peer reviewed
Published version
Thumbnail
View/Open
2018+IEEE+Access+-+Norgren+and+Skjetne+-+Multibeam-based+SLAM+algorithm+for+Iceberg+mapping+with+AUVs.pdf (7.478Mb)
URI
http://hdl.handle.net/11250/2588665
Date
2018
Metadata
Show full item record
Collections
  • Institutt for marin teknikk [2862]
  • Publikasjoner fra CRIStin - NTNU [26648]
Original version
IEEE Access. 2018, 6 26318-26337.   10.1109/ACCESS.2018.2830819
Abstract
Using autonomous underwater vehicles (AUVs) for mapping underwater topography of sea-ice and icebergs, or detecting keels of ice ridges, is foreseen as enabling technology in future Arctic marine operations. Wind, current, and Coriolis forces affect an iceberg’s trajectory, making automated mapping difficult. This paper presents a method aiming at enabling autonomous iceberg mapping using AUVs equipped with a multibeam echosounder by estimating the position and orientation of the iceberg. The method is based on a bathymetric simultaneous localization and mapping (SLAM) algorithm, namely the bathymetric distributed particle filter SLAM (BPSLAM) algorithm. The proposed method estimates the AUV’s pose in an iceberg-fixed coordinate system. The relative states can be used for both guiding the vehicle to achieve complete coverage, as well as estimation of a consistent iceberg topography. The algorithm also provides an estimate of the iceberg’s drift velocity – an important parameter for the AUV trajectory planning as well as any related ice management (IM) operations. Two new weighting algorithms for the BPSLAM method are proposed, enabling batch processing of multibeam echosounder (MBE) measurements to ensure real-time operation without discarding information. The proposed method is demonstrated using a real iceberg topography taken from the PERD iceberg sightings database, with simulated AUV and MBE range measurements. The algorithm is also evaluated on a real world bathymetric dataset, collected using the HUGIN HUS AUV.
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Journal
IEEE Access

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit