• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for matematiske fag
  • View Item
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for matematiske fag
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Gaussian Markov Models for Adaptive Smoothing

Ingebrigtsen, Rikke
Master thesis
View/Open
375955_FULLTEXT01.pdf (Locked)
375955_COVER01.pdf (Locked)
URI
http://hdl.handle.net/11250/258777
Date
2010
Metadata
Show full item record
Collections
  • Institutt for matematiske fag [2245]
Abstract
In this thesis, we study Gaussian Markov random field representation of the non-homogenous integrated Wiener process, for the purpose of doing adaptive smoothing of temporal data. We demonstrate that these representations are consistent for irregular locations, and derive Bayesian inferential algorithms with computational cost of only O(n), using numerical algorithms for band-matrices. We outline a more general purpose with the aim of doing more general generic adaptive smoothing of temporal data.
Publisher
Institutt for matematiske fag

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit