• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for matematiske fag
  • View Item
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for matematiske fag
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Exact Statistical Inference in Nonhomogeneous Poisson Processes, based on Simulation

Rannestad, Bjarte
Master thesis
Thumbnail
View/Open
351348_FULLTEXT01.pdf (576.1Kb)
351348_COVER01.pdf (47.56Kb)
351348_ATTACHMENT01.zip (54.70Kb)
URI
http://hdl.handle.net/11250/258711
Date
2007
Metadata
Show full item record
Collections
  • Institutt for matematiske fag [2672]
Abstract
We present a general approach for Monte Carlo computation of conditional expectations of the form E[(T)|S = s] given a sufficient statistic S. The idea of the method was first introduced by Lillegård and Engen [4], and has been further developed by Lindqvist and Taraldsen [7, 8, 9]. If a certain pivotal structure is satised in our model, the simulation could be done by direct sampling from the conditional distribution, by a simple parameter adjustment of the original statistical model. In general it is shown by Lindqvist and Taraldsen [7, 8] that a weighted sampling scheme needs to be used. The method is in particular applied to the nonhomogeneous Poisson process, in order to develop exact goodness-of-fit tests for the null hypothesis that a set of observed failure times follow the NHPP of a specic parametric form. In addition exact confidence intervals for unknown parameters in the NHPP model are considered [6]. Different test statistics W=W(T) designed in order to reveal departure from the null model are presented [1, 10, 11]. By the method given in the following, the conditional expectation of these test statistics could be simulated in the absence of the pivotal structure mentioned above. This extends results given in [10, 11], and answers a question stated in [1]. We present a power comparison of 5 of the test statistics considered under the nullhypothesis that a set of observed failure times are from a NHPP with log linear intensity, under the alternative hypothesis of power law intensity. Finally a convergence comparison of the method presented here and an alternative approach of Gibbs sampling is given.
Publisher
Institutt for matematiske fag

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit