Show simple item record

dc.contributor.authorLiu, Hongliang
dc.contributor.authorMoxness, Mads Henrik Strand
dc.contributor.authorProt, Victorien Emile
dc.contributor.authorSkallerud, Bjørn Helge
dc.date.accessioned2019-02-19T08:39:14Z
dc.date.available2019-02-19T08:39:14Z
dc.date.created2017-11-17T14:18:08Z
dc.date.issued2018
dc.identifier.citationJournal of Biomechanics. 2018, 66 86-94.nb_NO
dc.identifier.issn0021-9290
dc.identifier.urihttp://hdl.handle.net/11250/2586100
dc.description.abstractObstructive sleep apnea (OSA) affects a large percentage of the population and is increasingly recognized as a major global health problem. One surgical procedure for OSA is to implant polyethylene (PET) material into the soft palate, but its efficacy remains to be discussed. In this study, we provide input to this topic based on numerical simulations. Three 3 dimensional (3D) soft palate finite element models including mouth-close and mouth-open cases were created based on three patient-specific computed tomography (CT) images. A simplified material modeling approach with the Neo-Hookean material model was applied, and nonlinear geometry was accounted for. Young’s modulus for the implant material was obtained from uniaxial tests, and the PET implant pillars were inserted to the 3D soft palate model. With the finite element model, we designed different surgical schemes and investigated their efficacy with respect to avoiding the soft palate collapse. Several pillar schemes were tested, including different placement directions, different placement positions, different settings for the radius and the array parameters of the implant pillars, and different Young’s moduli for the pillars. Based on our simulation results, the longitudinal-direction implant surgery improved the stiffness of the soft palate to a small degree, and implanting in the transverse direction was evaluated to be a good choice for improving the existing surgical scheme. In addition, the Young’s modulus of the polyethylene material implants has an influence on the reinforcement efficacy of the soft palate.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titlePalatal implant surgery effectiveness in treatment of obstructive sleep apnea: a numerical method with 3D patient-specific geometriesnb_NO
dc.title.alternativePalatal implant surgery effectiveness in treatment of obstructive sleep apnea: a numerical method with 3D patient-specific geometriesnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber86-94nb_NO
dc.source.volume66nb_NO
dc.source.journalJournal of Biomechanicsnb_NO
dc.identifier.doi10.1016/j.jbiomech.2017.11.006
dc.identifier.cristin1515377
dc.relation.projectNorges forskningsråd: 231741nb_NO
dc.description.localcode© 2017. This is the authors’ accepted and refereed manuscript to the article. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/nb_NO
cristin.unitcode194,64,45,0
cristin.unitcode194,65,30,0
cristin.unitnameInstitutt for konstruksjonsteknikk
cristin.unitnameInstitutt for nevromedisin og bevegelsesvitenskap
cristin.ispublishedtrue
cristin.fulltextpreprint
cristin.qualitycode2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal