• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparison of Delayless Digital Filtering Algorithms and Their Application to Multi-Sensor Signal Processing

Swider, Anna; Pedersen, Eilif
Journal article, Peer reviewed
Accepted version
Thumbnail
View/Open
Delayless_and_numerically_efficient_methods_for_digital_filtering_of_measurements_v23_latex_SAGE_SHORT_FINAL.pdf (1.023Mb)
URI
http://hdl.handle.net/11250/2585231
Date
2018
Metadata
Show full item record
Collections
  • Institutt for marin teknikk [2885]
  • Publikasjoner fra CRIStin - NTNU [26746]
Original version
10.1177/0142331218799148
Abstract
In the phase of industry digitalization, data are collected from many sensors and signal processing techniques play a crucial role. Data preprocessing is a fundamental step in the analysis of measurements, and a first step before applying machine learning. To reduce the influence of distortions from signals, selective digital filtering is applied to minimize or remove unwanted components. Standard software and hardware digital filtering algorithms introduce a delay, which has to be compensated for to avoid destroying signal associations. The delay from filtering becomes more crucial when the analysis involves measurements from multiple sensors, therefore in this paper we provide an overview and comparison of existing digital filtering methods with an application based on real-life marine examples. In addition, the design of special-purpose filters is a complex process and for preprocessing data from many sources, the application of digital filtering in the time domain can have a high numerical cost. For this reason we describe discrete Fourier transformation digital filtering as a tool for efficient sensor data preprocessing, which does not introduce a time delay and has low numerical cost. The discrete Fourier transformation digital filtering has a simpler implementation and does not require expert-level filter design knowledge, which is beneficial for practitioners from various disciplines. Finally, we exemplify and show the application of the methods on real signals from marine systems.
Publisher
SAGE Publications
Journal
Transactions of the Institute of Measurement and Control

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit