Controller Design and Sparse Measurement Selection in Self-optimizing control
Journal article, Peer reviewed
Published version
Date
2018Metadata
Show full item recordCollections
Original version
IFAC-PapersOnLine. 2018, 51 (18), 458-463. https://doi.org/10.1016/j.ifacol.2018.09.382Abstract
Self-optimizing control focuses on minimizing loss for processes in the presence of disturbances by holding selected controlled variables at constant set-points. A measurement combination can be found, using the Null-space method, which further reduces the loss. Since self-optimizing control focuses on the steady-state operation, little attention has been put on the dynamic performance when selecting measurement combinations. In this work, an iterative LMI approach is combined with the sparsity promoting weighted l1-norm, to find a measurement subset together with PI controllers for the Null-space method. The measurement combination and the controllers are designed such that, the dynamic response is improved when the process is facing disturbances. The proposed method is illustrated on a Petlyuk column case study.