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Abstract: Self-optimizing control focuses on minimizing loss for processes in the presence of
disturbances by holding selected controlled variables at constant set-points. A measurement
combination can be found, using the Null-space method, which further reduces the loss. Since
self-optimizing control focuses on the steady-state operation, little attention has been put on
the dynamic performance when selecting measurement combinations. In this work, an iterative
LMI approach is combined with the sparsity promoting weighted /1-norm, to find a measurement
subset together with PI controllers for the Null-space method. The measurement combination
and the controllers are designed such that, the dynamic response is improved when the process
is facing disturbances. The proposed method is illustrated on a Petlyuk column case study.
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1. INTRODUCTION

Increasing demands for efficient operation and profitability
in the industry require a better understanding of the
steady-state operation and the dynamics of the process.
This often leads to more advanced control systems, e.g.,
Model Predictive Controllers (MPC) and Real-time opti-
mizers (RTO). Depending on the model size and complex-
ity, this can become very computational demanding.

Another approach is to use simple control structures that
keep specific controlled variables (CVs) at a constant
value, also known as self-optimizing control (Skogestad,
2000). The central idea of self-optimizing control is to
select CVs such that in the presence of disturbances, the
loss is minimized by holding them at constant set-points.

Besides using single measurements as the CVs, selecting
linear combinations of measurements will further improve
the self-optimizing control performance. Two methods
that achieve this are the Exact local method (Halvorsen
et al., 2003) and the Null-space method (Alstad and Sko-
gestad, 2007). For a given set of measurements, both the
Null-space and the Exact local method offers an infinite
number of possibilities for choosing the linear measure-
ment combinations. Using all measurements available will,
in theory, result in the lowest loss but, this increases the
risk of getting sensor failures and makes implementing
the control structure more difficult. Usually, there exists
a subset of the available measurements, that can be used
without any significant increase in loss. However, selecting
the optimal subset of measurements is a combinatorial
optimization problem and, every possible alternative needs
to be evaluated. This leads to a huge computational com-
plexity when there is a large number of measurements.

To find the best subset of measurements Kariwala and
Cao (2009) derived a branch and bound method, while in
(Yelchuru and Skogestad, 2012) a mixed integer quadratic
programming approach was used. However, these methods,
together with most research on self-optimizing control are
mainly concerned with the steady-state operation without
considering the dynamic performance.

Based on (Peaucelle and Arzelier, 2001), Klemets and
Hovd (2017) proposed an iterative linear matrix inequality
(LMI) approach to select the measurement combination
and PI controllers that improves the dynamic response
while maintaining the self-optimizing control properties.
In this work, this concept is expanded on by including
a penalty function in the optimization problem that pro-
motes sparsity by penalizing the number of measurements
used. The sparsity promoting function is known as the
weighted l;-norm (Candes et al., 2008), and has been
used in several papers for promoting sparsity in controller
design, see, e.g., (Dhingra et al., 2014, Fardad et al., 2011,
and Dorfler et al., 2014). The proposed method is validated
by application to a model of a Petlyuk distillation column.

The Petlyuk distillation column often referred to as the
divided wall column (DWC) offers an appealing alternative
for separating ternary mixtures. In comparison to the
traditional configuration, where two columns are used in
series, the Petlyuk column is capable of saving up to 30%
in both capital and energy costs according to Triantafyllou
and Smith (1992). However, despite the potential benefits
of Petlyuk columns, only a few implementations exist in
the industry due to their operational challenges. Adrian
et al. (2004) claim that it is difficult to control using de-
centralized strategies and suggests an MPC should be used
to achieve good controllability. Therefore, this works as
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an interesting case study for designing a control structure
using the proposed method.

The paper is organized as follows. Section II briefly sum-
marises the concept of self-optimizing control and the Null-
space method. The main method is presented in section 111
and will be applied to a Petlyuk distillation column model
in section IV. Finally, a conclusion is given in section V.

Notations: Let R™*™ denote the set of n x m real
matrices. For a matrix A, its transpose is denoted AT,
and A~! denotes its inverse. The symbols He{A} indicates
AT + A and At denotes any matrix of maximum rank
that satisfies A*A = 0. The identity matrix of suitable
dimension is given by I. Finally, let’s recall the Elimination
lemma (Skelton et al., 1997):

Lemma 1. For B € R™, C € R™" and Q = Q7 ¢
R™ "™ the following conditions are equivalent:

(1) 3 X € R™™ such that Q + He{BXC} < 0.
(2) BQB*T <0 and (CT):Q(CT)*T <.

2. SELF-OPTIMIZING CONTROL

Self-optimizing control is when an acceptable loss is
achieved with constant set-points, without the need to
reoptimize for disturbances (Skogestad, 2000). More pre-
cisely, the aim is to select controlled variables rather than
determining optimal set-points.

The optimization problem for achieving optimal steady-
state operation can be formulated as,

min J (u, d) (1)

u
where v € R™, and d € R"™ are the inputs and dis-
turbances respectively. It will be assumed that the active

constraints have been satisfied and that (1) has been re-
written as an unconstrained optimization problem.

What remains is to determine which of the unconstrained
variables (c) should be kept constant by using the remain-
ing available degrees of freedom u, in order to minimize the
loss caused by the disturbances d. To be able to quantify
the loss for keeping the selected controlled variables at
constant values, a method for calculating the worst case
loss was derived in (Halvorsen et al., 2003).

2.1 The Null-space method

Rather than selecting single measurements, a further re-
duction in loss can be accomplished by selecting the CVs
as optimal linear measurement combinations ¢ = Hy. The
matrix H € R™*™ defines the measurement combina-
tions, and y € R™ is the available measurements.

Under the assumption that implementation error (mea-
surement noise) can be neglected and that the number
of independent measurements available is greater or equal
the number of disturbances plus inputs (ny > nu + nd),
then Alstad and Skogestad (2007) proposed the Null-space
method for selecting a measurement combination. This
results in a zero local loss by choosing H such that,

HF =0 (2)
where F' is the sensitivity matrix for the optimal deviations

in the measurements (9y°Pt) with respect to changes in the
disturbances (9d):

8yopt
F =
od

(3)

The matrix F' can be obtained analytically, but can also
be computed numerically, by optimizing the non-linear
steady-state model of the plant for selected disturbances.

The solution for the measurements combination, H in (2)
is non-unique and, there exists an infinite number of pos-
sibilities in selecting H. Therefore, it would be preferable
to find a combination that also improves the dynamic
performance. However, the resulting closed-loop system is
not just dependent on the measurement combination, but
also on the feedback controllers. A method for simultane-
ously obtaining the H matrix and PI parameters will be
presented in the next section.

3. STATIC OUTPUT FEEDBACK CONTROL

For a given set of measurements, Klemets and Hovd (2017)
proposed an iterative LMI algorithm for finding H and
corresponding PI controllers that minimizes the Hs-norm
of the resulting closed-loop system. This paper uses the
H.,-norm as the performance measure but, instead of
optimizing for a given set of measurements, it aims to
expand on the previous work by including a sparsity
promoting penalty function that penalizes the number
of measurements used. Therefore, the aim is to find the
PI controllers and the dynamically optimal subset of
measurements when using the Null-space method.

8.1 Process model

Consider a system described by the continuous linear time-
invariant state-space model,

z(t) = Agz(t) + Buu(t) (4)
y(t) = Cya(t) (5)
where x € R™, v € R™ and y € R™ are the states,
inputs, and measurements respectively. The aim is to

find a measurement combination matrix H and design

decentralized PI controllers of the form:
t

u(t) = kp H y(t) + ki H ; y(r) dr (6)

The system in (4) and (5) can be augmented to include the
integrating states from the decentralized PI controllers:

= A, B, = B, 0 =
Aw:|:0 0:|7Bu:|:0 I]?Cyw:[cywo]

The closed loop system with self-optimizing control and
decentralized PI controllers can thus be given by,
z(t) = Ayz(t) + Buu(t) + B,w(t)
Z(t) = CooZ(t) + Doy t(t) + Doy (t) (7)
y(t) = C’yTj(t) + Dyww(t)
where 7 € R(#+nu) 5 ¢ R 5 ¢ R, @ € R™, and

z € R"* are the augmented state, control input, measure-
ment output, disturbance, and controlled output vectors

respectively. For K = diag(kp,, -, kp,..kir, - s Kiny),
and ' = [/ I]T, the control input @(¢) can be given by:
u(t)= KT H Cy, Z(t) + KT H Dy, w(2). (8)
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3.2 Hyo static output feedback in self-optimizing control

The H,, optimal control problem consists of minimizing
the H,,-norm of the closed-loop system from exogenous
disturbance signals @w(t) to the controlled output signals
Z(t). Defining the closed-loop matrix as,

L Acl Bcl
Tw’z o |:Ocl Dcl] (9)

with the closed loop matrices, ~ ~ ~
Ag = Ay + BUKT'HCy,, By = Bg + B,KT'H Dy,
Cu=Coo+D KT HCyy, Doy = Doy + Doy KT'H Dy
The objective is to find K and H such that [T, .|
is minimized. The H.,-norm has several interpretations
regarding performance. One is that it minimizes the peak
of the singular value of T, ,(jw). Alternatively, from a
time domain interpretation, it can be considered as the
worst-case 2-norm:
ECIE

ol = J5% T,
Finding an H., optimal controller can be difficult and
therefore, in practice, it is often easier to design a sub-
optimal one, by obtaining the minimum upper bound -y
that satisfies || Ty, z||co < 7. According to the well-known
Bounded Real Lemma, T, . is asymptotically stable and
| Tw, 2|lco < 7y if and only if there exists a symmetric matrix
P > 0 such that the following inequality holds:

ALP 4+ PAy + ChCy PBy+ ChDy
BLP+DLCy  DLDg—+%1

(10)

<0 (11)

A new parametrization for Hy static output feedback
(SOF) control was introduced in (Peaucelle and Arzelier,
2001) where the conservativeness was reduced by including
slack variables. An extension to the parametrization for
the Ho, SOF case was given in (Arzelier and Peaucelle,
2002) and (Ebihara et al., 2015) from which the following
linear function can be defined.

T
| 0 0 0P 0 0
M(P,7) = LL; B, Bu] [P o] [AI B BJ
_"_ C_’Zflf _Z'LU Dzu T ] O
0 I 0 0 —2I
An H., optimal solution for K and H that satisfies
the self-optimizing control principle for the Null-space

method, while ensuring a stable closed-loop system for (9)
can be obtained from the following theorem.

Theorem 1. There exist PI controllers and a measurement
combination H € R™*™ that gives a stable closed-
loop system and minimizes y while achieving ||T, ]|c0 <
~, if there exists matrices K, € R2rux(netnu) [0, ¢
R2Znux(nztnu) o diagonal matrix X = K1 ¢ RZnux2nu
and a matrix P = PT e R(rztnu)x(nztnu) that solves the

following non-convex optimization problem:
2

Ji = min (13)
K1,Kz,P,X,H
subject to: P > 0 (14)
X = diag(z1 ... Tanu) (15)
HF =0 (16)
Ky
M(P,v)+ He { [Kg] [THCy, THDy,, X]| } <0 (17)
-1

Proof. Similar to the proof in (Arzelier and Peaucelle,
2002), the inequality in (11) can be rewritten as:
10 CLHTTTKT 100 gTTTRTYT

yw yw
(18)
According to Lemma 1, (18) is equivalent to
Z
M(P,y) + He{ Zy| [~-KTHCy, —KTHD,, I]} <0,
Z3

(19)

with the matrices Z; € R(retnu)x2nu - 7, ¢ Rnatnu)x2nu
and, Zz € RZnux2nu Factorizing Zs gives,

M(P,v)+ (20)
AV ) )
HeQ | ZyZ3 | [-ZsKTHCyy —Z3KTHDy, Zs] p < 0.
I
Defining Ky := Z1Z3 "', Ky := ZoZ;", and Z3 := —X

(where X = K1) gives the expression in (17). =

The optimization problem in (13)-(17) requires solving
a bilinear matrix inequality (BMI), and thus an optimal
global solution can’t be guaranteed. However, an iterative
algorithm can be used to find a local optimum, following
the procedure described in Algorithm 1:

Algorithm 1

(1) Initialize, choose stabilizing state feedback gains K7,
and KQ.
(2) For fixed K7, and K5 solve the LMI:

Jip,1 = min 72
Subject to: (14), (15), (16), and (17).
(3) Fix X and H at the values obtained in step 2 and
solve the LMI:

(21)

_ : 2

Jp2 = K Y
Subject to: (14) and (17).

(4) If Jp1 — Ji2 < € stop, else update K7, and K, and
repeat step 2 and 3.

(22)

The controller parameters can be obtained from K = X 1.

The initialization variables K7 and K5 can be interpreted
as a suboptimal solution to a convex, full information H .-
control problem (with Cy, = [I O]T, and D, = [0 I]T)
and can be obtained using, e.g., (Ebihara et al., 2015).

3.8 Sparse static output feedback design

In the previous section, the problem of finding the H..-
optimal PI controllers and measurement combination, H
was considered for a given set of measurements. This
section aims to find the best measurement subset by
including a column-wise sparsity promoting function in the
optimization problem. The problem can be formulated as,
: 2

A card(H 23

P S () (23)
subject to (14), (15), (16), and (17). The cardinality of the

measurement matrix H is defined:

T =

card(H) := the number of non-zero columns of H.
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The cardinality function is non-convex and non-smooth,
making the optimization formulation in (23) a combinato-
rial problem, which is difficult to solve.

To address this issue, several convex relaxations like the
li-norm and the weighted l;-norm have been proposed
(Candes et al., 2008). By using the weighted /1-norm, the
cardinality function can be replaced with:

= Wi|H
i

Candes et al. (2008) noted that if the weights W; ; are
chosen to be inversely proportional to the [;-norm, then
there is an exact correspondence between the l;-norm and
the cardinality function. However, this requires a priori
knowledge of the H matrix, and therefore, a re-weighted
scheme needs to be implemented, where the weights are
updated after every iteration (k) as,

) _ 1
” 1H®)| +
where 1 >> k > 0 ensures the update is well-defined.

(24)

(25)

The weighted {1-norm in (24) promotes element-wise spar-
sity. However, it can easily be modified to promote column
(or row) sparsity as, e.g., shown in (Argha et al., 2017) by
revising it as,

FH) =Y WP HE) (26)
.9
with the update rule:
1
(k+1) _ (27)

J
SHSE | + K

The following iterative algorlthm can then be used to find
a subset of the available measurements:

Algorithm 2
(1) Initialize: Using algorithm 1, obtain K;, Ko, and H

for all measurements and compute W) using (27).
(2) For the fixed K7, and K3 solve the LMI'
Jk_PH)l(lIl 74+ A ZW |H; \ (28)

0.
Subject to: (14), (15) , (16), and (17).

(3) If [|[H*=1 — H®) || < e stop, else update W *+1) using
(27) and repeat step 2.

(4) Remove the measurements that correspond to the
zero columns in H and repeat algorithm 1.

By varying the value A there will be a trade-off between
the H,, performance and number of measurements used.
Additional weights may also be included to penalize cer-
tain control structures, e.g., if some measurement links are
unattractive due to high implementation cost.

4. CASE STUDY: PETLYUK DISTILLATION

The Petlyuk distillation column consists of six sections
as illustrated in Fig. 1, with the model information seen
in Table 1. Each section is arranged in the same column
shell with eight stages for each section. The ternary
feed is located between section 1 and 2, and consists of
components A, B, and C with the mole fractions z4,
zp, and z¢. Three product streams are drawn off in the

Table 1. Data for Petlyuk column

Column data
Relative volatilities T = [9 3 1]

77, = 0.063 min

Mg = Mp = 20M;

M; = 1 kmol

TE = [299.3 342.15 399.3] K

[2.86 —1143 —0.349]

Liquid time constant
Holdup top and bottom
Holdup stages

Boiling points A,B,C

Antoine’s parameters

Feed
Flow F = 1 kmol/min
Composition zpA =2 =zc = 0.33

Liquid fraction
Product specifications
Measurement delays
Compositions
Temperatures

qr = 0477
zA,p =TB,s =xc,p = 0.97 £0.01

5 min
1 min

sections 3 - 6, where the light component A dominates
the distillate stream (D), component B dominates in the
side-stream (S) and the heavy component C' dominates
the bottom stream (B). For a more detailed description of
the model, the reader is referred to (Alstad, 2005).

The distillate boilup (D) and bottom flow rate (B) are
used to stabilize the levels in the condenser and the
reboiler, respectively. Furthermore, the vapor split Ry
will be kept constant as it is difficult to use in practice.
Halvorsen et al. (2000) found that good self-optimizing
control can still be achieved when Ry is fixed. Therefore,
the remaining available degrees of freedom are,

u=[LV S Ry" (29)

corresponding to the reflux, boilup, side-stream flow and
liquid split, respectively.

Condenser

_ L D, Xp
;
Liquid split (Ry) - ——3 &
L T
N\ f‘}:‘
AN
1 5
: 8
5 7
i A
A s 207
[ i}
— iﬁ——
F .z q £ —1 5, rg
R
54
39
it
i
3
. =" - &
Vapor split (Ry) ($ Z
A4
Reboiler
B, rp

Fig. 1. Petlyuk distillation column

For the Petlyuk column, three product specifications
should be kept during operation; distillate purity (z4,p),
bottom purity (z¢, p) and side-stream purity (zp s), where
x;,; denotes the mole fraction of component ¢ in stream j.
The operational objective is, to minimize energy cost (V)
while maintaining the product purity specifications.
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Controlled variables

PI Parameters

—0.1907T4 + 0.0440T9 + 1.0000719 — 0.0035T%4 — 0.4325T38 4 0.2973T41 + 0.0664T47
0.2699T4 — 0.0694T9 — 1.0000T%9 — 0.0777T24 + 0.5713T38 — 0.3289T41 — 0.3060T 47
—0.535074 + 0.1889T9 + 1.0000719 + 0.2622T%4 — 0.6944T38 + 0.4433T41 + 0.0636747
0.21717T4 + 0.0085Ty — 0.8688T19 — 0.1867T24 + 1.0000738 — 0.6313741 — 0.5101Ty7

Cind,7 =

kp = 0.4745, k; = 0.0035

kp = 0.1908, k; = 0.1563
kp = 0.1763, k; = 0.0012
kp = 0.0495, k; = 0.0007

Table 2. Controlled variables and PI parameters.

PE———
Crel,D
Cre',S
Cind,7
Cind,48
0 100 200 300 400 500 600 700
0.98
0.975
[aa] ——
O 0.97 [~ T I
x /
0.965 \7/
0.96

0.98 «vm
© 0.97 —
£ V4
0.96 f
0.95 £

Fig. 2. Step disturbance of —0.1 in z4.

0 100 200 300 400 500 600 700
00

200 300 400 500 600 700
Time (min)

o

1

4.1 Previous control structures

The control structure design for the Petlyuk column model
has previously been studied by Alstad (2005), Halvorsen
et al. (2000) and Zumoffen et al. (2013). Most of the work
has mainly been focused on the steady-state operation of
the column. However, decentralized PI controllers were
designed by Alstad (2005) for CVs consisting of three
composition measurements and a linear combination of
temperatures obtained using the Null-space method. The
Petlyuk column was also investigated by Zumoffen et al.
(2013). For the same CVs, the authors proposed using
sparse PI controllers (with partial interactions between the
controllers), that further improved the transient perfor-
mance. These control structures will be used for compar-
ison in the dynamic simulations and are denoted c,cf, p,
and cref, s, with the subscripts, D and S representing the
decentralized and sparse control structures respectively.

4.2 Indirect Control

Indirect control is when the primary variables are kept
close to their desired value by controlling secondary vari-
ables at constant set-points (Hori et al., 2005). The pro-
posed control structures in ¢y, p and crcf,s, both use the

0.98 b

0.97

o

o< 0.96
0.95

0.94

0 100 200 300 400 500 600 700

098 | ' ' ' ' ' ' ]

0.97 for——"—

o 0.96 /
O

c
—C
x 095 ref,S |
C
C

0.94
0.93 ind,48 | |

0 100 200 300 400 500 600 700

0.99

0.985

* 0.98
o

X 0.975

0.97

0.965 L L L L . L ]
0 100 200 300 400 500 600 700
Time (min)

Fig. 3. Step disturbance of 0.1 in zp.

measurements of the three product compositions to keep
the products at their targeted values. While this ensures
that the purity specifications are kept, the long delays
associated with the composition measurements imposes
limitations on the closed-loop performance and makes fast
control difficult. Therefore, an indirect control structure is
proposed, that uses only the temperature measurements.

Perfect indirect control can be achieved using the Null-
space method assuming, ny > nd 4+ nu. In this example,
only changes in z4, zp, and gp will be considered as
disturbances. Therefore, at least seven independent mea-
surements are required. Using the proposed method, two
control structures were computed, using 48 (all), and 7
temperature measurements. These are denoted ¢;yq,45, and
Cind,7 Tespectively. The values for ¢;,q,7 are shown in Table
2, with T; being the temperature at stage 1.

4.8 Dynamic simulation

Dynamic simulations were performed on the non-linear
model of the Petlyuk distillation column. In the Figs. 2,
3, and 4, the proposed ¢;nq4,48, and cinq,7 are compared to
Cref,D, and crey s for step disturbances in z4, 2, and gp.
Since the sensitivity matrix F' in (3) is based on a local
linear model, it causes some steady-state loss for c¢;nq,4s
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0.965 L I L L L L
0 100 200 300 400 500 600 700
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0.955
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0 100 200 300 400 500 600 700

0.975

0.9725

0.97

Xgs

0.9675 [

0.965 [

0 100 200 300 400 500 600 700
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Fig. 4. Step disturbance of 0.1 in gp.

and cjnq,7. However, there is a significant improvement
in the transient behavior compared to cref p, and cref,s.
The steady-state loss can also easily be removed by, e.g.,
including an outer loop that adjusts the set-points, using a
slow integral action from the composition measurements.
As expected, using all 48 temperature measurements gives
a better response compared to using 7, since algorithm 2
gives a trade-off between the dynamic performance (Hqo-
norm) and the number of measurements used.

5. CONCLUSION

In this work, the transient behavior for the Null-space
method in self-optimizing control was considered. The
main objective is to find a subset of available measurement
combinations together with PI controllers that minimize
the dynamic impact from disturbances. The proposed
method was successfully applied to a Petlyuk distillation
column model. It was demonstrated that the obtained con-
trol structures improve the transient response compared to
other existing control structures.
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