Vis enkel innførsel

dc.contributor.authorTsagaraki, Tatiana Margo
dc.contributor.authorPree, Bernadette
dc.contributor.authorLeiknes, Øystein
dc.contributor.authorLarsen, Aud
dc.contributor.authorBratbak, Gunnar
dc.contributor.authorØvreås, Lise
dc.contributor.authorEgge, Jorun Karin
dc.contributor.authorSpanek, Roman
dc.contributor.authorPaulsen, Maria Lund
dc.contributor.authorOlsen, Yngvar
dc.contributor.authorVadstein, Olav
dc.contributor.authorThingstad, T. Frede
dc.date.accessioned2018-10-05T11:37:08Z
dc.date.available2018-10-05T11:37:08Z
dc.date.created2018-09-03T14:40:05Z
dc.date.issued2018
dc.identifier.citationThe ISME Journal. 2018, 1-12.nb_NO
dc.identifier.issn1751-7362
dc.identifier.urihttp://hdl.handle.net/11250/2566665
dc.description.abstractCombining a minimum food web model with Arctic microbial community dynamics, we have suggested that top-down control by copepods can affect the food web down to bacterial consumption of organic carbon. Pursuing this hypothesis further, we used the minimum model to design and analyse a mesocosm experiment, studying the effect of high (+Z) and low (-Z) copepod density on resource allocation, along an organic-C addition gradient. In the Arctic, both effects are plausible due to changes in advection patterns (affecting copepods) and meltwater inputs (affecting carbon). The model predicts a trophic cascade from copepods via ciliates to flagellates, which was confirmed experimentally. Auto- and heterotrophic flagellates affect bacterial growth rate and abundance via competition for mineral nutrients and predation, respectively. In +Z, the model predicts low bacterial abundance and activity, and little response to glucose; as opposed to clear glucose consumption effects in –Z. We observed a more resilient bacterial response to high copepods and demonstrate this was due to changes in bacterial community equitability. Species able to use glucose to improve their competitive and/or defensive properties, became predominant. The observed shift from a SAR11-to a Psychromonodaceae – dominated community suggests the latter was pivotal in this modification of ecosystem function. We argue that this group used glucose to improve its defensive or its competitive abilities (or both). Adding such flexibility in bacterial traits to the model, we show how it creates the observed resilience to top-down manipulations observed in our experiment.nb_NO
dc.language.isoengnb_NO
dc.publisherBMC (part of Springer Nature)nb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleBacterial community composition responds to changes in copepod abundance and alters ecosystem function in an Arctic mesocosm studynb_NO
dc.title.alternativeBacterial community composition responds to changes in copepod abundance and alters ecosystem function in an Arctic mesocosm studynb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber1-12nb_NO
dc.source.journalThe ISME Journalnb_NO
dc.identifier.doi10.1038/s41396-018-0217-7
dc.identifier.cristin1606314
dc.relation.projectNorges forskningsråd: 225956nb_NO
dc.relation.projectEC/FP7/603773nb_NO
dc.description.localcode© The Author(s) 2018. This article is licensed under a Creative Commons Attribution 4.0 International License.nb_NO
cristin.unitcode194,66,10,0
cristin.unitcode194,66,15,0
cristin.unitnameInstitutt for biologi
cristin.unitnameInstitutt for bioteknologi og matvitenskap
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal