Vis enkel innførsel

dc.contributor.authorChristiansen, Emil
dc.contributor.authorMarioara, Calin Daniel
dc.contributor.authorMarthinsen, Knut
dc.contributor.authorHopperstad, Odd Sture
dc.contributor.authorHolmestad, Randi
dc.identifier.citationMaterials Characterization. 2018, 144 522-531.nb_NO
dc.description.abstractScanning precession electron diffraction and automated crystal orientation mapping in a transmission electron microscope (TEM) have been applied to quantitatively study the crystal orientation of precipitate free zones (PFZs) of four GB regions in an AA6060 alloy in peak aged condition (temper T6) after uniaxial compression to 20% engineering strain. The PFZ width in the alloy was found to be w = 170 ± 40 nm. The results show that some PFZs develop significant misorientations relative to their parent grain, and represent, to the best knowledge of the authors, the first quantitative evidence of this. This misorientation may either be constant inside a particular PFZ, making it appear like a band or a very elongated subgrain, or be partitioned in discrete regions with a diameter comparable to the PFZ width, making the former PFZ into a collection of small grains. The band-like PFZ observed in this work had a misorientation relative to its parent grain of ≈ 7°, while the grain-like PFZ had grains with misorientations between ≈ 12° and ≈ 20° relative to its parent grain. The other PFZs that were observed had only limited misorientations relative to their parent grains, and had either dislocations perpendicular to the GB plane or a dislocation wall at the transition region. A general TEM study of the material at various engineering strains was also conducted and suggests that grain-like PFZs are more frequent for larger strains, indicating that the different PFZ features are likely due to different strain localisation in individual PFZs. This localisation is expected to be influenced by the orientation of the loading axis relative to crystal orientations and GB planes. It is also suggested that the different PFZ features engender different work hardening rates and possibly affect nucleation of intergranular fracture. The results support previous studies on the microstructure evolution of PFZs in age-hardenable aluminium alloys during deformation.nb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.subjectPlastisk deformasjonnb_NO
dc.subjectPlastic deformationnb_NO
dc.titleLattice rotations in precipitate free zones in an Al-Mg-Si alloynb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.subject.nsiVDP::Kondenserte fasers fysikk: 436nb_NO
dc.subject.nsiVDP::Condensed matter physics: 436nb_NO
dc.source.journalMaterials Characterizationnb_NO
dc.relation.projectNorges forskningsråd: 197405nb_NO
dc.relation.projectNorges forskningsråd: 237885nb_NO
dc.description.localcode© 2018. This is the authors’ accepted and refereed manuscript to the article. Locked until 3.8.2020 due to copyright restrictions. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
cristin.unitnameInstitutt for fysikk
cristin.unitnameInstitutt for materialteknologi
cristin.unitnameInstitutt for konstruksjonsteknikk

Tilhørende fil(er)


Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal