• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for datateknologi og informatikk
  • View Item
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for datateknologi og informatikk
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fast Seeded Region Growing in a 3D Grid

Lorentzen, Erlend Andreas
Master thesis
Thumbnail
View/Open
505168_COVER01.pdf (46.87Kb)
505168_ATTACHMENT01.zip (32.23Kb)
505168_FULLTEXT01.pdf (11.50Mb)
URI
http://hdl.handle.net/11250/252779
Date
2011
Metadata
Show full item record
Collections
  • Institutt for datateknologi og informatikk [3783]
Abstract
The purpose of this thesis was to examine ways to adapt common 2D segmentation techniques to work with 3D grids. The focus of the thesis became how to automate and improve the performance of region growing in 3D grids. After examining relevant literature and developing a tool to run experiments, a simple automatic region grower for 3D grids was developed. Quantitative performance measures and qualitative analysis of the segmentation results were performed. This algorithm was then used as a baseline for comparison when developing a more advanced region grower for 3D grids based on the seeded region grower (SRG) for 2D grids. This new algorithm was then modified to improve its speed and later extended to allow fully automatic operation by automating the placement of starting seeds. It was found that for the algorithms that were extended to a 3D grid, the main challenge was the resources needed by these algorithms when operating on high resolution grids. It was found that even though there have been steady and rapid improvements in consumer hardware since the original region growing algorithms were used on 2D grids, the very large amounts of data resulting from an extension from surface grids to volume grids requires that special attention is paid to handling resources effectively. It was further revealed that what was considered the best data structures and algorithms for the SRG algorithm when it was first introduced, is not necessarily the best choice on todays computing hardware. Also, the conclusion is drawn that with regards to performance, it is now possible to segment volumes approximately as fast as surfaces were segmented in the early 1990s.
Publisher
Institutt for datateknikk og informasjonsvitenskap

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit