Synthesis, Characterization and Drug Loading of Multiresponsive p[NIPAm-co-PEGMA] (core)/p[NIPAm-co-AAc] (Shell) Nanogels with Monodisperse Size Distributions
Raju, Rajesh; Bandyopadhyay, Sulalit; Sharma, Anuvansh; Gonzalez, Susana Villa; Carlsen, Per Henning; Gautun, Odd Reidar; Glomm, Wilhelm
Journal article, Peer reviewed
Published version

View/ Open
Date
2018Metadata
Show full item recordCollections
- Institutt for kjemi [1432]
- Institutt for kjemisk prosessteknologi [1850]
- Institutt for materialteknologi [2663]
- Publikasjoner fra CRIStin - NTNU [39925]
Original version
10.3390/polym10030309Abstract
We report the synthesis and properties of temperature- and pH-responsive p([NIPAm-co-PEGMA] (core)/[NIPAm-co-AAc] (shell)) nanogels with narrow size distributions, tunable sizes and increased drug loading efficiencies. The core-shell nanogels were synthesized using an optimized two-stage seeded polymerization methodology. The core-shell nanogels show a narrow size distribution and controllable physico-chemical properties. The hydrodynamic sizes, charge distributions, temperature-induced volume phase transition behaviors, pH-responsive behaviors and drug loading capabilities of the core-shell nanogels were investigated using transmission electron microscopy, zeta potential measurements, dynamic light scattering and UV-Vis spectroscopy. The size of the core-shell nanogels was controlled by polymerizing NIPAm with crosslinker poly(ethylene glycol) dimethacrylate (PEGDMA) of different molecular weights (Mn-200, 400, 550 and 750 g/mol) during the core synthesis. It was found that the swelling/deswelling kinetics of the nanogels was sharp and reversible; with its volume phase transition temperature in the range of 40–42 °C. Furthermore, the nanogels loaded with l-3,4-dihydroxyphenylalanine (L-DOPA), using a modified breathing-in mechanism, showed high loading and encapsulation efficiencies, providing potential possibilities of such nanogels for biomedical applications.