• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for datateknologi og informatikk
  • View Item
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for datateknologi og informatikk
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reduction of search space using group-of-experts and RL.

Anderson, Tore Rune
Master thesis
Thumbnail
View/Open
347435_FULLTEXT01.pdf (1.427Mb)
347435_ATTACHMENT01.zip (109.1Kb)
347435_COVER01.pdf (47.53Kb)
URI
http://hdl.handle.net/11250/250412
Date
2007
Metadata
Show full item record
Collections
  • Institutt for datateknologi og informatikk [3870]
Abstract
This thesis is testing out the group of experts regime in the context of reinforcement learning with the aim of reducing the search space used in reinforcement learning. Having tested different abstracion levels with this approach, it is the hyphothesis that using this approach to reduce the search space is best done on a high abstraction level. All though reinforcement learning has many advantages in certain settings, and is a preferred tehcnique in many different contexts, it still has its challenges. This architecture does not solve these, but suggests a way of dealing with the curse of dimentionality, the scaling problem within reinforcement learning systems.
Publisher
Institutt for datateknikk og informasjonsvitenskap

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit