Show simple item record

dc.contributor.advisorDowning, Keithnb_NO
dc.contributor.authorVik, Mikael Eikremnb_NO
dc.date.accessioned2014-12-19T13:31:34Z
dc.date.available2014-12-19T13:31:34Z
dc.date.created2010-09-02nb_NO
dc.date.issued2006nb_NO
dc.identifier347406nb_NO
dc.identifierntnudaim:1526nb_NO
dc.identifier.urihttp://hdl.handle.net/11250/250408
dc.description.abstractThis thesis describes a connectionist approach to learning and long-term memory consolidation, inspired by empirical studies on the roles of the hippocampus and neocortex in the brain. The existence of complementary learning systems is due to demands posed on our cognitive system because of the nature of our experiences. It has been shown that dual-network architectures utilizing information transfer successfully can avoid the phenomenon of catastrophic forgetting involved in multiple sequence learning. The experiments involves a Reverberated Simple Recurrent Network which is trained on multiple sequences with the memory being reinforced by means of self-generated pseudopatterns. My focus will be on the implications of how differentiated learning speed affects the level of forgetting, without explicit training on the data used to form the existing memory.nb_NO
dc.languageengnb_NO
dc.publisherInstitutt for datateknikk og informasjonsvitenskapnb_NO
dc.subjectntnudaimno_NO
dc.subjectMIT informatikkno_NO
dc.subjectKunstig intelligens og læringno_NO
dc.titleReducing catastrophic forgetting in neural networks using slow learningnb_NO
dc.typeMaster thesisnb_NO
dc.source.pagenumber70nb_NO
dc.contributor.departmentNorges teknisk-naturvitenskapelige universitet, Fakultet for informasjonsteknologi, matematikk og elektroteknikk, Institutt for datateknikk og informasjonsvitenskapnb_NO


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record