Vis enkel innførsel

dc.contributor.authorTu, Ying
dc.contributor.authorCheng, Zhengshun
dc.contributor.authorMuskulus, Michael
dc.date.accessioned2018-04-17T09:23:47Z
dc.date.available2018-04-17T09:23:47Z
dc.date.created2018-04-16T11:38:54Z
dc.date.issued2018
dc.identifier.citationMarine Structures. 2018, 60 201-217.nb_NO
dc.identifier.issn0951-8339
dc.identifier.urihttp://hdl.handle.net/11250/2494412
dc.description.abstractUnder certain harsh environmental conditions, jacket structures supporting offshore wind turbines might be exposed to plunging breaking waves, causing slamming forces that affect the structural integrity and fatigue life. The slamming forces should thus be properly considered during the design, but a suitable force model specifically for jacket structures is currently in absence. In this study, a five-parameter force model is developed for estimating global slamming forces due to plunging breaking waves on jacket structures, based on statistical analyses of experimental data from the WaveSlam project. The force model is developed by considering a total of 176 individual breaking waves, under six wave conditions. For each individual breaking wave, the time history of the slamming force is calculated based on hammer test data in addition to wave test data, and the wave parameters are acquired from a wave elevation measurement. The acquired time histories and wave parameters are then used to determine the parameters involved in the force model, including two exponential parameters (i.e. α1 and α2) and three dimensionless coefficients for the expressions of wave-dependent parameters (i.e. duration coefficient ζ1, rising time coefficient ζ2, and peak force coefficient ζ3). It is found that α1, α2, ζ1 and ζ2 are approximately constant, and ζ3 follows a lognormal distribution. The quantile that determines ζ3 should be carefully selected so as to provide a conservative prediction. A quantile of 95% is suggested in this paper, and it is found to be conservative based on the verification of the developed force model. Therefore, for a given sea state, this force model can give a deterministic and conservative prediction of the slamming force time history, regardless of the randomness of slamming forces. Challenges for the application of the force model are also addressed.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleA global slamming force model for offshore wind jacket structuresnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber201-217nb_NO
dc.source.volume60nb_NO
dc.source.journalMarine Structuresnb_NO
dc.identifier.doi10.1016/j.marstruc.2018.03.009
dc.identifier.cristin1579497
dc.description.localcode© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/)nb_NO
cristin.unitcode194,64,91,0
cristin.unitcode194,64,20,0
cristin.unitnameInstitutt for bygg- og miljøteknikk
cristin.unitnameInstitutt for marin teknikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal