Vis enkel innførsel

dc.contributor.authorKapelrud, Andre
dc.contributor.authorBrataas, Arne
dc.date.accessioned2018-01-04T11:27:53Z
dc.date.available2018-01-04T11:27:53Z
dc.date.created2017-10-18T16:47:17Z
dc.date.issued2017
dc.identifier.issn1098-0121
dc.identifier.urihttp://hdl.handle.net/11250/2475582
dc.description.abstractWe theoretically consider the spin-wave mode- and wavelength-dependent enhancement of the Gilbert damping in magnetic insulator–normal metal bilayers due to spin pumping as well as the enhancement's relation to direct and alternating inverse spin Hall voltages in the normal metal. In the long-wavelength limit, including long-range dipole interactions, the ratio of the enhancement for transverse volume modes to that of the macrospin mode is equal to two. With an out-of-plane magnetization, this ratio decreases with both an increasing surface anisotropic energy and mode number. If the surface anisotropy induces a surface state, the enhancement can be an order of magnitude larger than for the macrospin. With an in-plane magnetization, the induced dissipation enhancement can be understood by mapping the anisotropy parameter to the out-of-plane case with anisotropy. For shorter wavelengths, we compute the enhancement numerically and find good agreement with the analytical results in the applicable limits. We also compute the induced direct- and alternating-current inverse spin Hall voltages and relate these to the magnetic energy stored in the ferromagnet. Because the magnitude of the direct spin Hall voltage is a measure of spin dissipation, it is directly proportional to the enhancement of Gilbert damping. The alternating spin Hall voltage exhibits a similar in-plane wave-number dependence, and we demonstrate that it is greatest for surface-localized modes.nb_NO
dc.language.isoengnb_NO
dc.publisherAmerican Physical Societynb_NO
dc.relation.urihttps://arxiv.org/pdf/1612.07020.pdf
dc.titleSpin pumping, dissipation, and direct and alternating inverse spin Hall effects in magnetic-insulator/normal-metal bilayersnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.volume95nb_NO
dc.source.journalPhysical Review B. Condensed Matter and Materials Physicsnb_NO
dc.source.issue21nb_NO
dc.identifier.doi10.1103/PhysRevB.95.214413
dc.identifier.cristin1505696
dc.relation.projectEC/H2020/669442nb_NO
dc.relation.projectEC/FP7/612759nb_NO
dc.relation.projectNorges forskningsråd: 239926nb_NO
dc.description.localcode© 2017 American Physical Societynb_NO
cristin.unitcode194,66,20,0
cristin.unitnameInstitutt for fysikk
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel