• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The impact of design ventilation rates on the indoor air quality in residential buildings: an Italian case study

Moschetti, Roberta; Carlucci, Salvatore
Journal article, Peer reviewed
Accepted version
View/Open
1604_IBE_The+impact+of+design+ventilation+rates+on+the+indoor+air+quality+in+residential+buildings-+An+Italian+case+study.pdf (Locked)
URI
http://hdl.handle.net/11250/2475076
Date
2017
Metadata
Show full item record
Collections
  • Institutt for bygg- og miljøteknikk [4483]
  • Institutt for energi og prosessteknikk [4017]
  • Publikasjoner fra CRIStin - NTNU [34985]
Original version
10.1177/1420326X16643147
Abstract
The paper investigates the effects on building indoor air quality (IAQ) resulting from the choice of different design ventilation rates. A reference residential building was analysed by means of the multizone modelling software CONTAM, by monitoring the concentration of two pollutants: occupant-generated carbon dioxide (CO2) and total volatile organic compounds (TVOC) from indoor sources. A demand-controlled ventilation strategy based on building occupancy was implemented and users' presence schedules were defined. Specifically, the evolution of indoor pollutant concentrations was investigated when the design ventilation rates, recommended by two IAQ-related standards (the Italian UNI 10339 and the European EN 15251), were implemented through a mechanical ventilation system. Different results regarding the IAQ level were achieved accordingly to the dissimilar ventilation rates. After a statistical analysis on the distributions of CO2 and TVOC concentrations, EN 15251 outcomes showed overall better results of the analysed statistical metrics, i.e. prevalence, sensitivity and accuracy. Indeed, the EN 15251 design airflows led to indoor conditions that were more often classified either in the correct air quality class or in a higher class. Finally, a better alignment between the national and European IAQ standards is recommended, especially in terms of airflows, air quality classes and pollutant limit values.
Publisher
SAGE Publications
Journal
Indoor + Built Environment

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit