Vis enkel innførsel

dc.contributor.authorCerasi, Pierre
dc.contributor.authorLund, Elisabeth
dc.contributor.authorKleiven, Marta Laukeland
dc.contributor.authorStroisz, Anna Magdalena
dc.contributor.authorPradhan, Srutarshi
dc.contributor.authorKjøller, Claus
dc.contributor.authorFrykman, Peter
dc.contributor.authorFjær, Erling
dc.date.accessioned2017-12-15T15:32:41Z
dc.date.available2017-12-15T15:32:41Z
dc.date.created2017-08-21T11:05:52Z
dc.date.issued2017
dc.identifier.citationEnergy Procedia. 2017, 114, 3096-3112.nb_NO
dc.identifier.issn1876-6102
dc.identifier.urihttp://hdl.handle.net/11250/2472250
dc.description.abstractExperiments on shale specimens targeted creep deformation in order to investigate whether this mechanism could be relied upon to close fractures and stop leakage near injection wells. Uniaxial compression tests were conducted with stress ramp up paused near expected failure stress of the tested shale and additional deformation, interpreted as initial creep deformation, was logged. The tests were repeated on shale samples exposed to HCl acid solutions, simulating expected pH conditions near the well upon exposure to injected CO2. The purpose of the tests was to compare the creep propensity of the material after possible dissolution of load-bearing minerals, to the virgin case. The results show slight enhancement of creep deformation. Exposure to super-critical CO2 on the same shale was carried out on hollow cylinder plugs, with radial closure of the borehole measured under radial stress conditions. Results show a doubling in radial deformation when compared to control tests with brine exposure. Finally, analyses of synchrotron beam tomography images were performed to quantify volume change between shale specimens preserved in oil and specimens exposed to HCl, showing that total volume increased by 9%.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.relation.urihttp://www.sciencedirect.com/science/article/pii/S1876610217316247
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectGeomekanikknb_NO
dc.subjectGeomechanicsnb_NO
dc.titleShale Creep as Leakage Healing Mechanism in CO2 Sequestrationnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.subject.nsiVDP::Andre geofag: 469nb_NO
dc.subject.nsiVDP::Other geosciences: 469nb_NO
dc.source.pagenumber3096-3112nb_NO
dc.source.volume114nb_NO
dc.source.journalEnergy Procedianb_NO
dc.identifier.doi10.1016/j.egypro.2017.03.1439
dc.identifier.cristin1487583
dc.relation.projectNorges forskningsråd: 193816nb_NO
dc.description.localcode© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license https://creativecommons.org/licenses/by-nc-nd/4.0/nb_NO
cristin.unitcode194,64,90,0
cristin.unitnameInstitutt for geovitenskap og petroleum
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal