• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Benchmarking Framework for Control Methods of Maritime Cranes Based on the Functional Mockup Interface

Sanfilippo, Filippo; Hatledal, Lars Ivar; Pettersen, Kristin Ytterstad; Zhang, Houxiang
Journal article
Submitted version
Thumbnail
Åpne
sanfilippo-2017-a-benchmarking-framework-for-control-methods-of-maritime-cranes-based-on-the-functional-mockup-interface.pdf (1.326Mb)
Permanent lenke
http://hdl.handle.net/11250/2471079
Utgivelsesdato
2017
Metadata
Vis full innførsel
Samlinger
  • Institutt for havromsoperasjoner og byggteknikk [439]
  • Institutt for teknisk kybernetikk [2240]
  • Publikasjoner fra CRIStin - NTNU [20842]
Originalversjon
10.1109/JOE.2017.2691920
Sammendrag
A benchmark framework for advanced control methods of maritime cranes is presented based on the use of the functional mockup interface. The system integrates different manipulator models, all the corresponding hydraulic systems, various vessels, and the surrounding environment for visualization. Different control methods can be transparently implemented and tested. A set of routine tests, different cost functions, and metrics are provided—taking into account several factors, including position accuracy, energy consumption, quality, and safety for both the cranes and the surrounding environment. The concept of operational profiles is introduced, allowing for definition of different standard transporting and lifting operations. By considering task-oriented routines, this benchmark suite allows the comparison of different control methods independently from the specific crane model to be controlled. Two alternative control methods for maritime cranes based on the use of artificial intelligence are extensively compared. The first method is based on the use of genetic algorithms, while the second method involves the use of particle swarm optimization. Simulation results are presented for both methods.
Utgiver
Institute of Electrical and Electronics Engineers (IEEE)
Tidsskrift
IEEE Journal of Oceanic Engineering

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit