• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dead Reckoning of a Fixed-Wing UAV with Inertial Navigation Aided by Optical Flow

Fusini, Lorenzo; Johansen, Tor Arne; Fossen, Thor I.
Chapter, Peer reviewed
Accepted version
Thumbnail
View/Open
paper_ICUAS17.pdf (1.459Mb)
URI
http://hdl.handle.net/11250/2470890
Date
2017
Metadata
Show full item record
Collections
  • Institutt for teknisk kybernetikk [2833]
  • Publikasjoner fra CRIStin - NTNU [26591]
Original version
10.1109/ICUAS.2017.7991433
Abstract
This paper provides experimental results for dead reckoning of a fixed-wing UAV using a nonlinear observer (NLO) and a more recent tool called eXogenous Kalman Filter (XKF), which uses the NLO itself as a first-stage filter. The sensors used are an IMU (accelerometers, inclinometers, and rate gyros), a camera, and an altimeter; the observed states are position, velocity, and attitude. A machine vision system provides the body-fixed velocity of the UAV. Although the calculated velocity results affected by a bias, it is necessary both for estimating the attitude and for bounding the rate of divergence of the position during dead reckoning. Gyro, accelerometer, and optical flow (OF) velocity biases are estimated, but only as long as GNSS is available. When dead reckoning begins, they are frozen at their last calculated value. The experimental results show that the position error grows at a bounded rate with the proposed estimators.
Publisher
Institute of Electrical and Electronics Engineers (IEEE)

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit