Vis enkel innførsel

dc.contributor.authorZhang, Kai
dc.contributor.authorHolmedal, Bjørn
dc.contributor.authorHopperstad, Odd Sture
dc.contributor.authorDumoulin, Stephane
dc.contributor.authorGawad, Jerzy
dc.contributor.authorVan Bael, Albert
dc.contributor.authorVan Houtte, P
dc.date.accessioned2017-12-05T13:24:33Z
dc.date.available2017-12-05T13:24:33Z
dc.date.created2014-06-15T22:58:39Z
dc.date.issued2015
dc.identifier.citationInternational journal of plasticity. 2015, 66 3-30.nb_NO
dc.identifier.issn0749-6419
dc.identifier.urihttp://hdl.handle.net/11250/2469319
dc.description.abstractThe mechanical anisotropy of an AA1050 aluminium plate is studied by the use of five crystal plasticity models and two advanced yield functions. In-plane uniaxial tension properties of the plate were predicted by the full-constraint Taylor model, the advanced Lamel model (Van Houtte et al., 2005) and a modified version of this model (Mánik and Holmedal, 2013), the viscoplastic self-consistent model and a crystal plasticity finite element method (CPFEM). Results are compared with data from tensile tests at every 15° from the rolling direction (RD) to the transverse direction (TD) in the plate. Furthermore, all the models, except CPFEM, were used to provide stress points in the five-dimensional deviatoric stress space at yielding for 201 plastic strain-rate directions. The Facet yield surface was calibrated using these 201 stress points and compared to in-plane yield loci and the planar anisotropy which were calculated by the crystal plasticity models. The anisotropic yield function Yld2004-18p (Barlat et al., 2005) was calibrated by three methods: using uniaxial tension data, using the 201 virtual yield points in stress space, and using a combination of experimental data and virtual yield points (i.e., a hybrid method). Optimal yield-surface exponents were found for each of the crystal plasticity models, based on calibration to calculated stress points at yielding for random texture, and used in the latter two calibration methods. It is found that the last hybrid calibration method can capture the experimental results and at the same time ensure a good fit to the anisotropy in the full stress space predicted by the crystal plasticity models.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleMulti-level modelling of mechanical anisotropy of commercial pure aluminium plate: Crystal plasticity models, advanced yield functions and parameter identificationnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber3-30nb_NO
dc.source.volume66nb_NO
dc.source.journalInternational journal of plasticitynb_NO
dc.identifier.doi10.1016/j.ijplas.2014.02.003
dc.identifier.cristin1138151
dc.relation.projectNorges forskningsråd: 237885nb_NO
dc.description.localcode© 2014. This is the authors’ accepted and refereed manuscript to the article. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/nb_NO
cristin.unitcode194,66,35,0
cristin.unitcode194,64,45,0
cristin.unitnameInstitutt for materialteknologi
cristin.unitnameInstitutt for konstruksjonsteknikk
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal