Vis enkel innførsel

dc.contributor.authorWitherspoon, Velencia J.
dc.contributor.authorYu, Lucy M.
dc.contributor.authorJawahery, Sudi
dc.contributor.authorBraun, Efrem
dc.contributor.authorMoosavi, Seyed Mohamad
dc.contributor.authorSchnell, Sondre Kvalvåg
dc.contributor.authorSmit, Berend
dc.contributor.authorReimer, Jeffrey A.
dc.date.accessioned2017-11-09T11:37:06Z
dc.date.available2017-11-09T11:37:06Z
dc.date.created2017-08-08T15:58:08Z
dc.date.issued2017
dc.identifier.citationJournal of Physical Chemistry C. 2017, 121 (28), 15456-15462.nb_NO
dc.identifier.issn1932-7447
dc.identifier.urihttp://hdl.handle.net/11250/2465201
dc.description.abstractWe combined nuclear magnetic resonance (NMR) and molecular dynamics (MD) simulation to study xylene behavior in MOF-5, probing the effects of adsorbate geometry in a weakly interacting model isotropic metal organic framework (MOF) system. We employed NMR diffusometry and relaxometry techniques at low field (13 MHz) to quantify the self-diffusion coefficients (Ds) and the longitudinal relaxation times (T1) of xylenes in MOF-5 as a function of temperature at the saturated loading for each xylene. These experiments reveal the translational motion activation energies to be 15.3, 19.7, and 21.2 kj mol–1 and the rotational activation energies to be 47.26, 12.88, and 11.55 for the (p-, m-, o-) xylene isomers, respectively. Paraxylene exhibits faster translational motion, yet shows four times the activation energy barrier for rotational motion vis-à-vis the other isomers. MD simulations performed on these model systems corroborate the findings for paraxylene and suggest that paraxylene has the lower free energy barrier for hopping away from its binding sites, yet has the slowest rotational motion in the plane of the xylene molecule.nb_NO
dc.language.isoengnb_NO
dc.publisherAmerican Chemical Societynb_NO
dc.titleTranslational and Rotational Motion of C8 Aromatics Adsorbed in Isotropic Porous Media (MOF-5): NMR Studies and MD Simulationsnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber15456-15462nb_NO
dc.source.volume121nb_NO
dc.source.journalJournal of Physical Chemistry Cnb_NO
dc.source.issue28nb_NO
dc.identifier.doi10.1021/acs.jpcc.7b03181
dc.identifier.cristin1484961
dc.relation.projectNorges teknisk-naturvitenskapelige universitet: enersense: 68024013nb_NO
dc.relation.projectNotur/NorStore: NN9414Knb_NO
dc.description.localcode© American Chemical Society 2017. This is the authors accepted and refereed manuscript to the article. LOCKED until 19.5.2018 due to copyright restrictionsnb_NO
cristin.unitcode194,66,35,0
cristin.unitnameInstitutt for materialteknologi
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel