• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Translational and Rotational Motion of C8 Aromatics Adsorbed in Isotropic Porous Media (MOF-5): NMR Studies and MD Simulations

Witherspoon, Velencia J.; Yu, Lucy M.; Jawahery, Sudi; Braun, Efrem; Moosavi, Seyed Mohamad; Schnell, Sondre Kvalvåg; Smit, Berend; Reimer, Jeffrey A.
Journal article, Peer reviewed
Accepted version
Thumbnail
View/Open
xylene-mof.pdf (3.774Mb)
URI
http://hdl.handle.net/11250/2465201
Date
2017
Metadata
Show full item record
Collections
  • Institutt for materialteknologi [2776]
  • Publikasjoner fra CRIStin - NTNU [41954]
Original version
Journal of Physical Chemistry C. 2017, 121 (28), 15456-15462.   10.1021/acs.jpcc.7b03181
Abstract
We combined nuclear magnetic resonance (NMR) and molecular dynamics (MD) simulation to study xylene behavior in MOF-5, probing the effects of adsorbate geometry in a weakly interacting model isotropic metal organic framework (MOF) system. We employed NMR diffusometry and relaxometry techniques at low field (13 MHz) to quantify the self-diffusion coefficients (Ds) and the longitudinal relaxation times (T1) of xylenes in MOF-5 as a function of temperature at the saturated loading for each xylene. These experiments reveal the translational motion activation energies to be 15.3, 19.7, and 21.2 kj mol–1 and the rotational activation energies to be 47.26, 12.88, and 11.55 for the (p-, m-, o-) xylene isomers, respectively. Paraxylene exhibits faster translational motion, yet shows four times the activation energy barrier for rotational motion vis-à-vis the other isomers. MD simulations performed on these model systems corroborate the findings for paraxylene and suggest that paraxylene has the lower free energy barrier for hopping away from its binding sites, yet has the slowest rotational motion in the plane of the xylene molecule.
Publisher
American Chemical Society
Journal
Journal of Physical Chemistry C

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit