• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Estimating the variation, autocorrelation, and environmental sensitivity of phenotypic selection

Chevin, Luis-Miguel; Visser, Marcel E.; Tufto, Jarle
Journal article, Peer reviewed
Submitted version
Thumbnail
Åpne
fluctsel.pdf (528.8Kb)
Permanent lenke
http://hdl.handle.net/11250/2465079
Utgivelsesdato
2015
Metadata
Vis full innførsel
Samlinger
  • Institutt for matematiske fag [1435]
  • Publikasjoner fra CRIStin - NTNU [21000]
Originalversjon
Evolution. 2015, 69 (9), 2319-2332.   10.1111/evo.12741
Sammendrag
Despite considerable interest in temporal and spatial variation of phenotypic selection, very few methods allow quantifying this variation while correctly accounting for the error variance of each individual estimate. Furthermore, the available methods do not estimate the autocorrelation of phenotypic selection, which is a major determinant of eco-evolutionary dynamics in changing environments. We introduce a new method for measuring variable phenotypic selection using random regression. We rely on model selection to assess the support for stabilizing selection, and for a moving optimum that may include a trend plus (possibly autocorrelated) fluctuations. The environmental sensitivity of selection also can be estimated by including an environmental covariate. After testing our method on extensive simulations, we apply it to breeding time in a great tit population in the Netherlands. Our analysis finds support for an optimum that is well predicted by spring temperature, and occurs about 33 days before a peak in food biomass, consistent with what is known from the biology of this species. We also detect autocorrelated fluctuations in the optimum, beyond those caused by temperature and the food peak. Because our approach directly estimates parameters that appear in theoretical models, it should be particularly useful for predicting eco-evolutionary responses to environmental change.
Utgiver
Wiley
Tidsskrift
Evolution

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit