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Abstract

Despite considerable interest in temporal and spatial variation of phenotypic selection,

very few methods allow quantifying this variation while correctly accounting for the

error variance of each individual estimate. Furthermore, the available methods do not

estimate the autocorrelation of phenotypic selection, which is a major determinant of

eco-evolutionary dynamics in changing environments. We introduce a new method for

measuring variable phenotypic selection using random regression. We rely on model se-

lection to assess the support for stabilizing selection, and for a moving optimum that may

include a trend plus (possibly autocorrelated) fluctuations. The environmental sensitivity

of selection also can be estimated by including an environmental covariate. After testing

our method on extensive simulations, we apply it to breeding time in a great tit popula-

tion in the Netherlands. Our analysis finds support for an optimum that is well predicted

by spring temperature, and occurs about 33 days before a peak in food biomass, consis-

tent with what is known from the biology of this species. We also detect autocorrelated

fluctuations in the optimum, beyond those caused by temperature and the food peak.

Because our approach directly estimates parameters that appear in theoretical models, it

should be particularly useful for predicting eco-evolutionary responses to environmental

change.

Keywords. Fluctuating selection; Gaussian fitness function; Generalized linear mixed

models; Poisson regression.



Introduction

The extent to which natural selection changes in time and space has profound implications

for the dynamics of adaptation, from the maintenance of polymorphism (reviewed by

Felsenstein, 1976; Hedrick et al., 1976; Hedrick, 2006; Bell, 2010) to the evolution of bet

hedging and/or phenotypic plasticity (Gillespie, 1973, 1974; Bull, 1987; Svardal et al.,

2011; Via and Lande, 1985; Gavrilets and Scheiner, 1993; Lande, 2009; Tufto, 2015).

Apparent temporal variation in selection is a common feature of several classic examples

of natural selection in the wild (reviewed in Bell, 2010; Calsbeek et al., 2012; Svensson

and Calsbeek, 2012), from beak shape in Darwin’s finches (Grant and Grant, 2002) to

banding patterns in Cepea snails (Cain et al., 1990), or spine number in three-spined

sticklebacks (Reimchen and Nosil, 2002). Local adaptation also is pervasive (Hereford,

2009), indicating that natural selection often varies in space too. But despite a long-

lasting interest in variable selection, the latter is often reported mostly as a qualitative

pattern, and there are few quantitative measurements of the magnitude of variation in

selection at the phenotypic level (but see Engen et al., 2012; Calsbeek et al., 2012). In

particular, the few available methods do not treat phenotypic selection across time or

space as an actual stochastic process, but rather as a simple random variable, and thus

provide no measure of its autocorrelation.

An important aspect of variation in phenotypic selection is the relationship between

phenotypic selection and the environment. Conceptually, for a phenotypic trait to be

involved in adaptation to particular axes of the ecological niche (sensu Hutchinson’s

multidimensional niche, Holt (2009)), selection on that trait needs to change with envi-

ronmental variables that define these axes. The causes of natural selection (or selective

agents) can thus be revealed by demonstrating a covariance between measurements of

selection and environmental variables (Wade and Kalisz, 1990), but a recent review high-

lighted that this has seldom been performed so far (MacColl, 2011), except for a few

notable examples (Ahola et al., 2012; Kelly, 1992; Brown et al., 2013; Reed et al., 2013b;

Visser et al., 2015). Two obvious reasons are the difficulty in identifying (or measuring)
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relevant environmental variables, and having enough datapoints in time or space to es-

timate the selection-environment covariance. Another reason is that the importance of

the covariance between environment and phenotypic selection has perhaps not been fully

appreciated until recently, at least outside of the theoretical literature. This situation is

changing, however, and the environmental sensitivity of selection (change in an optimum

phenotype with the environment), a key component of theories on phenotypic adapta-

tion and phenotypic plasticity, is increasingly perceived as an important determinant of

the interplay between genetic evolution, phenotypic plasticity, and population growth in

a changing environment (Chevin and Lande, 2010; Gienapp et al., 2013; Vedder et al.,

2013; Michel et al., 2014). A third impediment is the lack of a robust and general method

for estimating the variance of phenotypic selection, and its covariance with environmental

variables. One of our aims is to provide such a method.

Most measurements of phenotypic selection in a given generation rely on methods

stemming from the Lande and Arnold (1983) approach, which is based on classic linear

regression. Extensions of this method allow treating more realistic distributions of fitness

residuals and trait-fitness relationships by use of generalized linear models. For instance,

Janzen and Stern (1998) proposed using logistic regression (with a logit link function

and Bernoulli or Binomial responses) for analysis of survival selection. More recently,

aster modeling has been developed to decompose fitness into components with known

distributions, and fit these components jointly to infer selection (Shaw and Geyer, 2010).

The Lande-Arnold approach also has been extended recently by Morrissey and Sakrejda

(2013) to allow for measurements of selection gradients from arbitrary fitness functions

estimated by spline-based methods (Schluter, 1988), rather than by the original quadratic

approximation.

In contrast, there are fewer developments on measuring the variability of phenotypic

selection. Even when phenotypic selection is shown to vary significantly through space or

time, the magnitude of this variation often is not quantified (Ahola et al., 2012; Kelly,

1992; Brown et al., 2013). When measurements of phenotypes and fitnesses are available

for different times (or locations), the most common procedure has been to estimate each
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selection gradient separately, and then compute the variance of selection gradients from

the variance of each estimates (as reviewed by Siepielski et al., 2009). This is however

problematic, as it conflates sampling variance with the actual variance of the process, as

highlighted by Morrissey and Hadfield (2012) (see also Siepielski et al. (2013)). A method

has recently been proposed to estimate fluctuating selection in age-structured popula-

tions (Engen et al., 2012), which directly estimates the variance of selection gradients by

maximum likelihood from the phenotypes and fitnesses in all years, correctly account-

ing for measurement error. However, this method assumes that selection gradients are

independent and identically distributed, and therefore does not allow for autocorrelation

(the same holds for a non-parametric approach proposed by Calsbeek et al. (2012)). Yet

theory has shown that the temporal autocorrelation in phenotypic selection is at least as

important as its variance for the long-term evolution and demography of a population

(Charlesworth, 1993; Lande and Shannon, 1996; Bürger and Gimelfarb, 2002; Chevin,

2013; Tufto, 2015; Zhang, 2012), so it is necessary to treat phenotypic selection explicitly

as a time series.

One of the most appealing properties of the directional selection gradient is that, in

a given generation, it directly relates to the quantity that predicts evolutionary change

of the mean phenotype for a normally distributed trait, namely the slope of the adaptive

surface relating (log) mean fitness to the mean trait (hence the name gradient, Lande

(1976); Lande and Arnold (1983)). But in a temporally variable environment, although

the variance of directional gradients can be used to predict the magnitude and variance

of responses to selection (conditional on the additive genetic variance), it cannot reveal

whether the genetic response to selection in a given generation is likely to be increase fit-

ness in the next (as discussed in Chevin (2013)), which will often be of interest. This more

complete description of the evolution of quantitative traits in fluctuating environments is

afforded by models of a moving optimum, where fitness is maximized at an intermediate

phenotypic value that changes with the environment (Charlesworth, 1993; Lande and

Shannon, 1996; Bürger and Gimelfarb, 2002; Chevin, 2013; Tufto, 2015). In such models,

directional selection is caused by a mismatch between the optimal and mean phenotype,
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and the long-term evolution (and demography) of the population depends on patterns of

movements of the optimum, which are not fully captured by temporal change in direc-

tional selection gradients (Chevin and Haller, 2014). Furthermore, fluctuating selection

is likely to be a strong driver of the environmental stochasticity of population growth,

but computing the contribution of fluctuating selection on some measured trait(s) to the

overall observed fluctuations in population size requires more information than is pro-

vided by the temporal distribution of selection gradient (which only describes the local

slope of the fitness function). Hence, if we are to estimate parameters of fluctuating phe-

notypic selection that can be related to theoretical predictions on expected fitness and

population growth in a random environment, we should focus as much as possible on

changes in the actual (absolute) fitness surface, rather than just on selection gradients. If

the fitness function includes an optimum phenotype, then the location, width and height

of the fitness peak should be estimated.

Here we introduce a method to estimate variation in phenotypic selection using mea-

surements of traits and fitness (or components thereof) across time (or space). This

method responds to the requirements detailed above, as well as several other important

ones. First, fitness is treated as an expected property of individuals, rather than a real-

ized number of offspring, for instance. This corresponds to the propensity definition of

fitness, as generally accepted in population genetics (Mills and Beatty, 1979), and im-

plemented in analysis of phenotypic selection for instance by Shaw and Geyer (2010).

Considering fitness or its components as parameters of distributions of random variables

(survival probability, expected number of offspring), rather than realizations of the vari-

ables themselves, allows separating the actual selection gradient/differential from the

random component of phenotypic change caused by demographic stochasticity (Engen

and Sæther, 2014). The latter contributes to random genetic drift rather than change

caused by natural selection (Rice, 2004, pp. 181-187). Second, we use phenotypes and

fitnesses from all years (or locations) to estimate variation in selection using random re-

gression, rather than estimating selection separately within each year (or location). This

allows a more accurate estimation of parameters, ruling out for instance apparent fluc-
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tuating selection caused by estimation error across years (Siepielski et al., 2009). This is

especially relevant for quadratic terms describing stabilizing (if negative) or disruptive (if

positive) selection. These two forms of selection have important qualitative differences in

terms of the evolutionary predictions they generate (Lande, 1976; Bulmer, 1974; Bürger

and Gimelfarb, 2002; Dieckmann and Doebeli, 1999), so it is of considerable biological

importance to be able to assess whether a trait is always under stabilizing selection, even

though some individual estimates may be compatible with disruptive selection owing to

estimation error. Third, we compare different models (with and without stabilizing selec-

tion, environmental fluctuations, trends and effects of environmental covariates) using a

model selection procedure (Spiegelhalter et al., 2002).

In the following, after introducing the underlying biological model and its statistical

formulation, we use simulations of a randomly fluctuating optimum to assess the per-

formance of our approach in detecting key aspects of the model (stabilizing selection,

fluctuating selection, autocorrelation of the optimum). We then apply our method to

a longitudinal dataset of breeding time in great tits (Reed et al., 2013a; Visser et al.,

1998), illustrating how our approach can shed new light on classic examples of selection

in response to climate change.

Methods

MODEL

We present our approach in the context of temporally changing selection, and address

spatial variation in the Discussion. Our method can be applied to any episode of viability

or fertility selection, or to overall selection through lifetime fitness for organisms with

discrete non-overlapping generations. For the presentation of the method, we mostly focus

on models for fecundity components of fitness, such as number of surviving offspring. Such

discrete non-negative variables are best modelled by distributions such as the Poisson, or

Poisson mixtures. Within the framework of generalized linear models, the logarithm is

a commonly used link function relating the expected value of such response variables to
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the linear predictor containing the effects of covariates of interest. If including both linear

and quadratic effects of the traits, this leads to a Gaussian model of stabilizing selection.

Writing the model first in terms of parameters of biological interest, the fitness (ex-

pected number of offspring) in year t of individuals with phenotype z is given by

Wt(z) = Wmax,t exp

{
−(z − θt)2

2ω2

}
, (1)

where θt is the optimum phenotype at time t, and ω is the width of the fitness peak

(smaller ω causes stronger stabilizing selection). We shall assume that θt is linearly de-

pendent on one or several observed or latent environmental processes. Letting xt denote

an observed environmental variable, and εt a latent environmental process,

θt = A+Bxt + εt. (2)

We assume that εt is an autoregressive process with autocovariance function Cov(εt, εt+h) =

α|h|σ2
ε and mean E(εt) = 0. (We also briefly consider a random walk of the optimum, see

below).

The primary parameters of fluctuating selection that we need to estimate are thus the

width ω the fitness function, and parameters of movements of the optimum θt, namely A,

B, σ2
ε and α. These parameters relate to classic theory of evolution under stabilizing selec-

tion. For instance, the strength of stabilizing selection can be measured by the reduction

in phenotypic (and additive genetic) variance within a generation, which is proportional

to the opposite of the curvature of the log-mean fitness landscape. For a Gaussian fitness

function, this equals S = 1/(ω2 + σ2
z), where σ2

z is the phenotypic variance before selec-

tion (Phillips and Arnold (1989a); Lande and Arnold (1983); note that S should not be

confused with the selection differential, sometimes denoted S or s). It can be shown that

1/S = ω2 + σ2
z is the squared width of the fitness landscape representing mean fitness

as a function of the mean phenotype (Lande, 1976). The quadratic selection gradient

estimated by the Lande and Arnold (1983) approach is (in univariate form) γ = S + β2.

Thus, unlike S, γ does not measure the strength of stabilizing selection directly but

must be combined with the estimated selection gradient β, as previously pointed out by

other authors (Phillips and Arnold, 1989b; Lande and Arnold, 1983; Arnold et al., 2001;
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Schluter, 1988). With a Gaussian fitness function, the directional selection gradient as

estimated by the Lande and Arnold (1983) approach is β = S(θ − z̄), so the response to

selection by the mean phenotype is proportional to the strength of stabilizing selection

and the deviation of the mean phenotype from the optimum. Predictions for the lag load

or evolution of plasticity in a fluctuating environment in turn depend on parameters of

fluctuations in θ (e.g., Charlesworth (1993); Lande and Shannon (1996); Chevin (2013);

Tufto (2015); Zhang (2012)).

For the statistical estimation of these primary parameters, it is convenient to rewrite

equations (1) and (2) as

lnWt(z) = µt + (βz + ζt)z + βzzz
2 + βxzxtz, (3)

where the expected number of offspringWt(z) is treated as the mean parameter of a Pois-

son distribution, or related distributions such as the negative binomial (a gamma-Poisson

mixture). This corresponds to a generalized linear mixed model (hereafter GLMM) with

a logarithmic link function. The linear predictor of this GLMM includes (i) a fixed effect

of t, treated as a factor (µt); (ii) a linear effect of z, with regression slope that includes

both a fixed effect βz and a random effect ζt; (iii) a quadratic effect of z; and (iv) an

interaction between xt and z. The random effect on the regression slope of z is assumed to

have autocovariance function Cov(ζt, ζt+h) = α|h|σ2
ζ . Equation (3) thus describes a form

of random regression, where the random effects on the slope are structured according to a

first order autoregressive process (AR1). Equation (3) also is a latent Gaussian model, a

class of hierarchical models where an unobserved latent Gaussian process, with distribu-

tion described by some hyperparameters, gives rise to observations that are independent

conditional on the latent process. Here, the latent process is fluctuating selection, that

is, the changing trait-fitness relationship described by the slopes in eq. (3) and defined

at the population level, whereas the observations are individual phenotypes and fitnesses

at each time point.

The primary parameters of fluctuating selection can be recovered from this GLMM
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through the transformations

ω =

√
− 1

2βzz
, θt = −βz + βxzxt + ζt

2βzz
, B = − βxz

2βzz
,

σ2
ε =

σ2
ζ

4β2
zz

, Wmax,t = exp

{
µt −

(βz + βxzxt + ζt)
2

4βzz

}
. (4)

In our analyses, we also fit a GLMM similar to (3) but with no quadratic term (βzz = 0), in

order to compare models with and without stabilizing selection. This GLMM corresponds

to an exponential fitness function, for example, Wt(z) = Wmax,t exp {µt + (βz + ζt)z}, for

which the selection gradient in year t is βz + ζt regardless of the phenotype distribu-

tion. Such a fitness function is thus a good null model for fluctuating selection, since all

variation in selection gradients must come from environmental changes affecting βt.

When the selection episode under investigation is based on viability rather than fe-

cundity selection, the number of surviving individuals is best modelled as a binomially

distributed variable, or a betabinomial to account for overdispersion. The survival prob-

ability w(z) can then be related to covariates of interest through a logit link function

ln(p/(1 − p)) (logistic regression), as in Janzen and Stern (1998), or a complementary

log log link (ln(− ln(1− p))), which arises naturally in survival analysis with a constant

hazard rate (instantaneous mortality risk). Both link functions produce symmetric stabi-

lizing selection, but the sigmoid shape of these functions necessarily implies a flattening

of the fitness function and weaker selection for high survival rates close to one, because

high survival implies less opportunity for selection to occur. This also makes the overall

fitness function non-Gaussian, although both fitness functions are well approximated by

a Gaussian for low survival.

INFERENCE AND MODEL SELECTION

All inferences were made using INLA (Rue et al., 2009), an R package for Bayesian

statistics, which uses integrated nested Laplace approximation for the rapid computation

of posterior densities for latent Gaussian hierarchical models. The rationale behind our

choice of priors is discussed in details in Appendix S1. In brief, we relied on non- or

weakly informative priors for most parameters, except for ω when the latter was used in
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computations that assume stabilizing selection, in which case we sometimes used a prior

that assumes that βzz < 0 in the case study.

Our approach relies on comparison between models with different degrees of complex-

ity and number of parameters. Regardless of the actual underlying process, the quality

and quantity of available data should determine whether the best model is one that

includes temporal changes in the optimum, or a simpler one that considers a constant

fitness function (with or without an optimum). In order to compare the fit obtained with

different models, we use the deviance information criterion (hereafter DIC), an analog

to Akaike’s information criterion (AIC) for hierarchical Bayesian models (Spiegelhalter

et al., 2002). Both the AIC and the DIC are model selection criteria based on informa-

tion theory (Burnham and Anderson, 2002), which allow ranking the predictive power of

different models using their likelihoods, penalizing models with more parameters. Among

the models considered, the model with the lowest DIC is chosen, and models within DIC

2 to 3 points larger than the best model are considered to have nearly as strong support

from the data as the best model (Spiegelhalter et al., 2002; Burnham and Anderson,

2002). Using other newly developed criteria, the Watanabe-Akaike information criterion

(Gelman et al., 2014), as well as a cross-validation score based on conditional predictive

ordinate-values (Gneiting and Raftery, 2007; Held et al., 2010) yielded very similar model

rankings (Figure S3.1).

SIMULATIONS

The ability of the method to identify the best model was tested using simulations of

fluctuating selection. We modeled samples from a population undergoing stabilizing se-

lection with autocorrelated fluctuations in the optimum, as in equations (1) and (2). The

sample size was drawn each year from a Poisson distribution with mean n = 25 or 50

individuals. We considered 40 time points, which is a large but still realistic number that

compares to existing long-term studies of natural populations (e.g. Reed et al., 2013a;

Vedder et al., 2013; Grant and Grant, 2002). We drew individual phenotypes from the

same normal distribution each year, that is, we neglected responses to selection and ge-
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netic drift for simplicity. Indeed, our approach estimates selection based on trait-fitness

relationships in each time, and does not use information on responses to selection. How-

ever, responses to selection may buffer or amplify deviations of the mean phenotype from

the optimum (Lande and Shannon, 1996; Chevin, 2013; Tufto, 2015), in effect changing

the magnitude of environmental fluctuations, which may affect the estimation procedure

to some extent (see effect of σθ in Figure 1b). The phenotypic variance before selection

σ2
z was set to 1 without loss of generality, which is equivalent to focusing on standard-

ized trait values scaled to their phenotypic standard deviation. For each individual, its

fitness was computed from its phenotype using (1), and its actual number of offspring

was then drawn from a Poisson distribution with mean Wt(z). We varied the width of

the fitness function ω such that the strength of stabilizing selection S = 1/(ω2 + σ2
z)

(e.g. Lande, 1976) was 0.025, 0.05, 0.1, or 0.2. For each width of the fitness function,

the standard deviation (herafter SD) of fluctuations in the optimum was varied from 0

(constant optimum) to 0.5, 1, 2, and 4. This combination of widths of the fitness function

and magnitudes of fluctuations in the optimum causes Sσθ, the SD of directional selec-

tion gradients without response to selection and neglecting genetic drift, to vary from 0

to 0.8. For each combination of these parameters, we varied the autocorrelation of the

optimum, α = 0 (no autocorrelation), 0.1, 0.25, 0.5, 0.75, 0.9. We also allowed temporal

changes in fitness beyond those caused by fluctuating selection, by drawing the maxi-

mum fitness Wmax,t from a log normal distribution with mean 5 and SD 0.2 on the log

scale. The mean number of offspring across years was thus 5.1 for hypothetical individ-

uals with the optimum phenotype. We also ran simulations with an exponential fitness

function Wt(z) = Wmax,t exp {βtz}, which corresponds to pure directional selection (no

stabilizing selection) at each time, with gradient βt. In those simulations, we drew βt for

each time point from a normal distribution with mean 0 and SD ranging from 0 to 0.8

(by increments of 0.2), thus covering the same range of variation in directional selection

gradients as in simulations with a moving optimum. We used the same values for the

autocorrelation of βt as those for θt.

We then ran the estimation procedure under a choice of models. Because the number of
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parameters of the complete model in equation (4) is relatively large, we did not consider all

possible models but instead focused on a subset of biologically meaningful models to test

particular questions, as recommended for model selection (Burnham and Anderson, 2002).

Specifically, we fitted (i) the AR1 model in equation (4), with no covariate x ; (ii) a similar

model but with uncorrelated fluctuations (white noise), i.e. random Poisson regression

with independent random effects on the slope; (iii) a model with autoregressive slope but

no quadratic term (no optimum); (iv) a model with a constant optimum (quadratic term

and no random effect on the slope), implying no fluctuating selection. For each parameter

set, we ran 200 simulations, and we computed the proportion of simulations where a given

feature of the models was selected based on DIC, as a way to quantify the support for this

feature. For instance, the proportion of simulations where any model with a quadratic

term has the lowest DIC by at least 2 points measured support for stabilizing selection,

and the proportion of simulations where any of the models with a random effect and a

quadratic term was chosen based on DIC measured support for a fluctuating optimum.

CASE STUDY ON GREAT TITS

We then applied our method to a dataset of fecundity selection on breeding date in the

Hoge Veluwe population of great tits (Parus major), in the Netherlands. We used years

from 1973 to 2013, and removed all clutches that had been manipulated experimentally,

following Reed et al. (2013b). The remaining dataset included 3782 clutches. The trait z

we investigated was breeding date (date of first egg laying), and we measured the fecundity

component of fitness W as the number of individuals surviving to become fledglings. We

could have used number of recruits surviving to the next breeding season, as in Reed

et al. (2013a), but this has much smaller mean and hence larger coefficient of variation

due to demographic stochasticity, causing more uncertainty in estimates of all parameters

and reducing statistical power. A somewhat high probability of clutch failure (around

32%, see below) caused the distribution of clutch sizes to be manifestly zero-inflated

(Supplementary Figure S3.2), so we modeled a zero-inflated Poisson instead of a Poisson

distribution as above, unless otherwise stated. To account for possible non-independence
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in the data caused by some females reproducing repeatedly in different years, we also

investigated models with female identity included as a random effect in the analysis. To

account for few replicates for a large proportion of females we used a correction described

in Ferkingstad and Rue (2015). Our dataset also included environmental variables that

we used as covariates to explain movements of the optimum: the mean temperature over

a critical time window during which it influences the date of the peak in food biomass

and, when available, the date of the food peak itself (Visser et al., 2006).

Results

EVALUATING THE METHOD WITH SIMULATIONS

We first tested our approach on simulations of an optimum phenotype undergoing an

autoregressive process. Our first aim was to assess whether our method is efficient in

detecting stabilizing selection (assuming constant ω), regardless of patterns of fluctua-

tions. Figure (1a) shows that the proportion of simulations where the best model (by at

least 2 DIC points) includes a quadratic term increases rapidly with the actual simulated

strength of stabilizing selection, and approaches 1 for S as small as 0.05. This corresponds

to weak stabilizing selection (Lande, 1975), which would typically be non-significant if

estimated from a single time point with moderate sample size as here (see Figure 8 in

Kingsolver et al. (2001), which reports estimates of the standardized quadratic gradient

γ = S + β2 ≈ S under weak directional selection). Here, stabilizing selection is detected

more efficiently by pooling data from several time points.

Figure (1b) shows that the proportion of simulations where the best model includes

fluctuations in the optimum phenotype increases with the strength of stabilizing selection

(darker lines indicate larger S = 1/(ω2 + σ2
z)). In particular, simulations with fluctuating

selection but no optimum (lighter lines) essentially do not lend support to any model

with a moving optimum. For a given S, the probability to detect a fluctuating optimum

increases with the magnitude of actual fluctuations in this optimum, except in the case of

large fluctuations, under strong selection (rightmost point in darkest lines). In this case,
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Figure 1: Test of the approach with simulations. The proportion of simulations of fluctuating

selection (out of 200 repeats) where the model that best fits the data by at least 2 DIC points includes

a specified feature of selection (below, where this feature is ‘detected’), is shown against the actual

parameters used in simulations. (a) Detection of stabilizing selection (quadratic term in (3)), against

the strength of stabilizing selection S = 1/(ω2 + σ2
z). Values for S = 0 correspond to simulations with

Wt(z) = Wmax,t exp {βtz}, which include no stabilizing selection. (b) Detection of any form of random

fluctuation in an optimum phenotype, against the actual standard deviation σθ of simulated fluctuations

in the optimum. (c) Detection of an autoregressive (AR1) optimum, against the actual autocorrelation α

of simulated fluctuations in the optimum. (d) Detection of an AR1 optimum, conditional on detecting a

fluctuating optimum. The gray scale and line width represents the magnitude of fluctuations in (a), (c)

and (d), with darker and thicker lines indicating larger σθ, and the strength of stabilizing selection in (b).

The lighter and thiner lines in (b) correspond to the exponential fitness function (with no optimum), while

only simulations with a fluctuating optimum were used in (c) and (d). Simulations were run for 40 time

points, with the mean sample size per time point being n = 50, the phenotypic variance σ2
z = 1, the width

of the fitness function such that S = 0.025, 0.05, 0.1, 0.2. Fluctuations in the optimum are determined

by their standard deviation σθ = 0 (constant optimum), 0.5, 1, 2, 4, and autocorrelation α = 0 (white

noise), 0.1, 0.25, 0.5, 0.75, 0.9.
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fluctuating selection is strong enough to substantially reduce the expected number of

offspring of most individuals in most generations, reducing the power to detect variation

in selection as compared to more moderate fluctuations. The probability to detect fluc-

tuating selection when the optimum is actually constant (values for σθ = 0 in fig (1b)),

which has some connection to type I error, was always low in our simulations.

The probability to detect an autocorrelated optimum (AR1 process) increases with

the actual autocorrelation of fluctuations, but also with their magnitude as indicated by

the gray scale (Figure (1c)). AR1 is detected in at most 20% of simulations for α < 0.4,

and even strongly autocorrelated fluctuations are not detected as AR1 if their magnitude

is small (lighter lines in (1c), for which σθ = 0.25, 0.5). However, conditional on detecting

a fluctuating optimum (either white noise or autoregressive), the proportion of simula-

tions that do detect autocorrelation becomes substantial and increases with increasing α

(Figure 1d).

The autocorrelation of the optimum is estimated more accurately under larger fluctua-

tions (larger σθ): the posterior mean of α is closer to its actual value for dark as compared

to light lines in Figure 2a, and the 95% credible interval becomes narrower towards the

right in Figure 2b. The credible intervals on α are very sensitive to the strength of sta-

bilizing selection, being reduced by a factor of 3 as S changes from small to large (light

gray to dark lines in Figure 2b). But in all cases the credible intervals in Figure 2b remain

quite large, showing that our simulations with 40 time points do not provide sufficient

information to estimate the autocorrelation of the optimum with high accuracy, even in

cases where an autocorrelated optimum may be detected in Figure (1c). Similarly, the

posterior mean α is slightly biased towards 0, the mean of the prior distribution, even

under large fluctuations (Figure 2a), as expected generally when limited sample size does

not allow the likelihood to completely dominate the prior.

Our hierarchical Bayesian method estimates the joint posterior distribution for all

parameters, from which the marginal posterior distribution for each time point can be

recovered. The primary parameters of our biological model depend non-linearly on pa-

rameters in the GLMM (see eq. (4)). However, their posterior marginal distribution can
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Figure 2: Inferred autocorrelation of optimum in simulations. (a) The posterior mean for the

autocorrelation of movements of the optimum phenotype are plotted against the actual autocorrelation

α used in simulations. Darker and thicker lines indicate larger fluctuations in the optimum (as quantified

by σθ), and the dashed line plots y = x. (b) The width of the 95% credible interval for α is plotted

against the magnitude of fluctuations in the optimum, quantified by σθ. Darker and thicker lines indicate

stronger stabilizing selection (larger S). Parameters as in Figure 1a.
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Figure 3: Estimates of fluctuating optimum in an individual simulated sample. The simulated

movements of an optimum phenotype (thick full line) are represented along time in a particular simulation

repeat. The posterior mean for the estimated optimum is also represented in dashed, together with the

0.95 credible interval (shading). The dark gray dots are the individual phenotypes. The same simulated

pattern of phenotypic selection is estimated with mean sample size per time point n = 50 (left) or 25

(right). The phenotypic variance is σ2
z = 1, the width of the fitness function is ω = 3, the optimum

phenotype fluctuates with σθ = 2 and α = 0.5, and all other parameters are as in Figure 1a.

be found by drawing samples from the joint posterior distribution of parameters of the

GLMM (as allowed by packages such INLA), and applying the transformation (4) to each

sample. An example of estimated fluctuations of an optimum phenotype is illustrated in

Figure 3. When the mean sample size is n = 50, the movements of the optimum are in-

ferred with good accuracy, including outside of the current phenotypic range (individual

phenotypes appear as gray dots), and the 95% credible interval includes the true optimum

at all time points. Reducing the mean sample size to 25 widens the credible interval and

increases the error of the posterior mean, making it closer to the long-term mean, but

the major tendencies of the optimum (such as the sign of the deviation from the mean

optimum) are still well captured in this example.
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CASE STUDY: PHENOLOGY OF GREAT TITS

To illustrate the usefulness of our approach, we next apply it to a well-known example of

climate-change induced phenotypic selection: breeding time in the Great tit population of

Hoge Veluwe in the Netherlands (Reed et al., 2013a; Visser et al., 1998; Reed et al., 2013b).

In this species, there is strong evidence that the date of egg laying is under selection for an

optimum set by the peak in the biomass of caterpillars that are the main food resource for

hatchlings (Visser et al., 2006). But movements of the optimum phenotype have not been

estimated directly from the phenotypes and fitnesses of all individuals in this population.

Table 1 shows a number of candidate models for the Hoge Veluwe great tit data. We

first fitted models without any environmental covariates. Given this model form, there

was weak evidence for a nonzero autocorrelation between the optima in different years t

(DIC reduced by 3.29 for model 2 vs. 1, with ζt AR1 or iid, respectively). We investigated

whether the data showed evidence for non-stationarity, by fitting an alternative model

where the optimum follows a random walk (discrete time equivalent of Brownian motion

as modeled by Estes and Arnold (2007) and Hansen et al. (2008)) instead of AR1, but

this increased the DIC by 1.4 (model 3 versus model 2). Fitting an alternative model

with a linear trend in the optimum, equivalent to an environmental covariate xt = t, did

not reduce the DIC either (models 4 and 5, with ζt iid or AR1, respectively).

Selection on laying date in great tits (and other passerines) is known to depend on

the timing of the peak in the biomass of caterpillars which they use as food (Visser et al.,

2006). This in turn partly depends on the phenology of trees, which is largely determined

by spring temperature. Having estimates of the mean temperature over a critical time

window known to influence the food peak (Visser et al., 2006), we changed the model to

include this as a covariate xt instead of a linear trend in the optimum, but still allowing

for random fluctuations beyond those caused by spring temperature. This improved the

model, causing DIC to decrease by 4.21 for models with AR1 residual variance (model 7

vs. 2). With this environmental covariate included, there was still evidence for nonzero

autocorrelation in the remaining variation in the optimum (εt AR1 instead of iid) as

shown by the decrease in DIC by 4.9 when comparing model 7 to model 6.
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Table 1:Model selection for temporal variation in selection on laying date in great tits. Linear

predictors are shown for different candidate models of selection on breeding time, together with the model

assumed for the random effect (ζt being either independent and identically normally distributed, iid, or

following an autoregressive order 1 process, ar1). Also shown are the associated differences in DIC (∆DIC)

relative to the best model (model 7). Further details are given in the main text. The number of fledglings

is obtained from the linear predictor as a zero-inflated Poisson variable, except in models 13 and 14

(Poisson and zero-inflated negative Binomial, respectively). Mother identity was included as a random

effect in model 15, treating some cases where the mother was unknown as different mothers.

Model Linear predictor: µt + βzz+ ζt ∆DIC

1) No covar. βzzz
2 + ζtz iid 7.5

2) No covar. βzzz
2 + ζtz ar1 4.21

3) Random walk βzzz
2 + ζtz rw1 5.61

4) Linear trend βzzz
2 + βztzt+ ζtz iid 7.61

5) Linear trend βzzz
2 + βztzt+ ζtz ar1 4.43

6) Temper. βzzz
2 + βzxzxt + ζtz iid 4.9

7) Temper. βzzz
2 + βzxzxt + ζtz ar1 0

8) No random slope βzzz
2 + βzxzxt 32.4

9) Temper. + trend βzzz
2 + βzxzxt + βztzt+ ζtz ar1 0.24

10) No stab. sel. βzxzxt + ζtz ar1 25.18

11) Free lin. slopes βzzz
2 + βztz 14.55

12) Free lin. and quadr. βzzz
2 + βztz + βzztz

2 14.19

13) No. zero.infl. βzzz
2 + βzxzxt + ζtz ar1 6129.08

14) Zero. infl. neg. bin. βzzz
2 + βzxzxt + ζtz ar1 90.96

15) Fem. id. rand. eff. βzzz
2 + βzxzxt + ζtz ar1 8.2

We then compared the model with the spring temperature and autocorrelation in-

cluded (model 7) to a number of alternatives, including a model without random fluc-

tuations in the optimum beyond those generated by spring temperature (model 8). Re-

moving the random fluctuations led to an increase in DIC of 32.4, strongly suggesting

that additional environmental variables other than spring temperature itself influence
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the optimum. A model including both a linear trend in the optimum and effects of the

spring temperature was also considered (model 9) but this model did not improve DIC.

Comparing model 7 with a model without the quadratic term βzzz
2, that is, an expo-

nential fitness function with random fluctuations in the slope of log fitness on the trait

(model 10), strongly favoured our selected model based on stabilizing Gaussian selection

(difference in DIC equal to 25.18), where directional selection comes from mismatches

between the mean phenotype and the optimum.

We also considered models with the regression slopes βzt estimated as free parame-

ters in different years (model 11), rather than being modelled as random effects. This

model was further extended to also include different quadratic regression coefficient βzzt

in different years (model 12). These more flexible model alternatives, providing a form

of goodness-of-fit test of our model, did not lead to any improvement in DIC. Thus we

conclude that there is no evidence in the data for any deviations in the local slope and

curvature of the fitness function beyond what is predicted by our Gaussian model with a

fluctuating optimum (1).

The last three models were used as tests for basic features of our statistical model.

Our choice of residual distribution of fitness was supported by the strong increase in DIC

when replacing the zero-inflated Poisson by a regular Poisson distribution (model 13), or

by a zero-inflated negative binomial (model 14). This last comparison suggests that there

is little overdispersion in the number of fledglings produced by a given female in a given

year, beyond that caused by the zero-inflation. DIC also increased (by 8.2) if including

a random effect associated to female identity, indicating that there was no significant

variation in annual number of fledglings between females.

Parameter estimates under our selected model (model 7) and the best model without

any environmental covariates (model 2) are listed in Tables 2 and 3, respectively. Both

models estimate 32% zero inflation (p0). The inclusion of temperature as a covariate

greatly improved the precision of estimates for several of our model parameters (smaller

S.E. and CI in Table 2 than in Table 3). This improvement agrees well with our intuition

about how our method extracts information about the different parameters from the
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Table 2: Estimate of the width ω of the Gaussian fitness function, the intercept A and slope B in the

regression of the optimum θt on temperature xt and the standard deviation σ2
ε and autocorrelation α of

additional fluctuations in the optimum, for the selected model of selection on onset of breeding through

the number of fledglings (model 7 in Table 1). The parameter estimates were computed by transforming

samples from the posterior according to eqs. (4). Also reported are the zero-inflation parameter p0, and

the standard deviation σν of the random effect on maternal identity.

Parameter Posterior mean

± S.E.

95% credible in-

terval

ω (days) 20.55± 1.7 (17.85, 24.42)

σε (days) 6.75± 1.66 (4.4, 10.53)

Autocorrelation α 0.3029± 0.2419 (−0.2176, 0.7113)

Intercept A (April day) 19.43± 1.95 (14.97, 22.89)

Slope B (days/◦C) −5.01± 1.09 (−7.38,−2.93)

p0 0.32± 0.01 (0.31, 0.33)

Table 3: Same as Table 2, but for the model without environmental covariates (model 2 in Table 1).

Parameter Posterior mean

± S.E.

95% credible in-

terval

ω (days) 24.11± 2.73 (20.08, 30.78)

σε (days) 11.3± 2.56 (7.5, 17.94)

Autocorrelation α 0.2472± 0.2075 (−0.1745, 0.626)

A (April day) 17.66± 2.95 (11.3, 23.06)

p0 0.32± 0.01 (0.31, 0.33)

data. For instance regarding ω, with some - albeit incomplete - information about current

location of the optimum provided by the environmental covariate at different time points,

model 7 is better able to infer the strength of stabilizing selection from the local steepness

of the fitness function. In contrast, for model 2 not utilizing this information, the strength

of stabilizing selection can to a greater extent only be inferred from the local curvature

of the fitness function, making the uncertainty in ω much greater.
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The estimated width of the fitness function in the best model was ω = 20.55 days.

With the average within-year phenotypic standard deviation being σz = 5.35 days, this

yields for the standardized strength of stabilizing selection on the unitless trait measured

in the scale of phenotypic standard deviation, S ′ = σ2
z/(ω

2 + σ2
z) = 0.063, which can

be compared directly to the S used in simulations (see Figure (1a)). The estimated

environmental sensitivity of selection, as quantified by the slope B of the optimum on

the environmental covariate (here temperature), is such that the optimum laying date

advances by 5.01 days/◦C. In model 2 that does not include temperature as a covariate,

A is simply the mean optimal laying date across years, which is estimated to be April 18

(Table 3) whereas in model 7 A is the optimal laying date (April 19) at the mean value

of spring temperature (since most of our covariates were mean-centered ). Finally, note

that the standard deviation of the optimum is estimated to be larger in model 2 than

in model 7 (11.3 versus 6.75 days, respectively), as expected because in the latter model

part of the fluctuations are captured by the relationship with temperature, and σε only

describes variation that is left after accounting for this.

Having established an effect of the spring temperature xt on the optimum, we analysed

the pattern of fluctuations in this variable. Direct observations of temperature yields more

power to detect autocorrelation, but after removal of the long term trend in xt by ordinary

linear regression, there was no evidence for autocorrelation in the residuals of xt. The

standard deviation σxt around the long term trend was estimated to 1.07◦C with a 95%-

confidence interval of (0.87, 1.37). This gives for the standard deviation of fluctuations in

the optimum, arising from the combined effect of variation in spring temperature and the

latent random variable εt, σθ =
√
B2σ2

xt + σ2
ε = 8.62 days. A proportion B2σ2

xt/σ
2
θ = 38%

of the total variance in θt is thus attributable to fluctuations in temperature around the

long term trend.

The estimated patterns of fluctuations in the optimum are represented in Figure 4.

The right panel shows how the fitness function scales in comparison to patterns of pheno-

typic variation in the trait, represented by a Gaussian curve (both curves are standardized

to the same height). The average phenotype distribution (represented by the gray curve)
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Figure 4: Estimated movements of the optimum laying date. The time series of estimates for the

optimum phenotype θt (solid line), based on the selected model for number of fledglings, is shown on the

left panel, together with its 95% credible interval (dashed lines). Also shown is the mean laying date in

each year (dots), and the timing of the peak in catterpillar biomass (dotted line). For years before 1985,

the food peak date was not available, so an estimate based on linear regression on spring temperature

was used, with a 95%-prediction interval represented by the shaded zone. The right panel shows the

estimated Gaussian fitness function in solid curve, and a normal density representing the mean within-

year phenotypic distribution (variance equal to mean empirical variance in onset of breeding across all

years) in dashed curve, both centered on the mean laying date across years.
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is narrower than the fitness function, consistent with the estimated weak stabilizing selec-

tion. The time series of estimates of θt are shown in the left panel (mean of the posterior

marginal for each date in continuous line, 95% credible interval in dashed lines), using

the same scale for the Y axis as in the right panel. This gives a sense of how much the

optimum fluctuates relative to the widths of both the fitness function and the phenotype

distribution. Interestingly, the mean laying date (represented as dots in Figure 4) is later

than the optimum in most years (by an average 5.1 days, based on posterior mean es-

timates of θt each year), resulting in a biased mismatch with optimum and directional

selection for earlier breeding. Figure 4 also shows the date of the peak in the biomass

of caterpillar food (dotted line). The latter is either directly available (after 1985), or

predicted from the spring temperature (before 1985), using a linear model based on years

where measurements exist (Visser et al., 2006). It is striking that the optimum phenotype

closely tracks major movements of the food peak, but with some advance. To investigate

this further, we re-analysed the data using the food peak date as a covariate in addition

to spring temperature, for years where this date was available (Appendix S2). Using the

food peak date as a covariate and assuming a constant lag between the optimum and the

food peak yielded a better model than using any other covariate in isolation (tempera-

ture, or time for linear trend, models 8 to 11 in Table S2.1). However, the best model

included all three covariates (model 1 in Table S2.1). In models that assume that the

optimum laying date occurs a fixed number of days before the food peak at that no other

covariate affect the optimum (model 10 in Table S2.1), the mean lag is about 33 days

(Table S2.2).

Discussion

IMPLICATIONS OF THE APPROACH AND RESULTS

The variance of phenotypic selection across time or space cannot be estimated from in-

dividual estimates of selection gradients (or differentials), because this conflates the true

variance with sampling variance (as emphasized by Morrissey and Hadfield, 2012). In-
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stead, it can be estimated through a random effect (across years or locations) on the

regression slope of relative fitness on individual phenotype. Allowing a flexible covariance

structure for this random effect makes it possible to model different forms of autocor-

relation in phenotypic selection. Here we assumed a first-order autoregressive process

(AR1) for phenotypic selection (and we also fitted a random walk), but our method can

easily accommodate other structures, such as ARp (p-order autoregressive process), or

continuous-time processes such as white noise, Ornstein-Uhlenbeck, or Brownian motion

(as in e.g. Arnold et al. (2001); Hansen et al. (2008)).

The linear regression method of Lande and Arnold (1983) could be directly extended

to the measurement of fluctuating selection, by including a random effect on the linear

(directional) gradient β, thus measuring the variance and autocorrelation of directional

selection. Linear regression with a random effect on the slope in the form of a stochas-

tic process is sometimes described as dynamic linear regression (Petris et al., 2009), a

class of state-space models (Shumway and Stoffer, 2010). However, our approach based

on GLMM with a log link function proves more useful for several reasons. First, we di-

rectly estimate a single parameter ω that determines the strength of stabilizing selection,

while the quadratic gradient γ does not. Indeed, movements of an optimum with constant

width would produce changes in γ, while they would not affect the strength of stabiliz-

ing selection (see Methods, and Phillips and Arnold (1989b); Lande and Arnold (1983);

Schluter (1988)). Hence, temporal variation in γ, as reported in some empirical studies

(see e.g. Figure 2B in Charmantier et al., 2008), can be perfectly consistent with constant

stabilizing selection (constant ω in our model), but changing deviation of the mean phe-

notype from the optimum. Second, the use of linear regression for analysis of phenotypic

selection has been criticized for its reliance on the non-realistic assumption of Gaussian

distribution of fitness residuals, which leads to wrong confidence intervals and hypothesis

testing using F- or t-tests, despite providing unbiased estimates of linear and quadratic

regression coefficients (Mitchell-Olds and Shaw, 1987; Janzen and Stern, 1998; Shaw and

Geyer, 2010; Morrissey and Sakrejda, 2013). This problem may be circumvented by using

non-parametric resampling methods such as bootstrapping or jack-knifing, as first sug-
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gested by Lande and Arnold (1983). Here, we chose to use the more realistic statistical

framework of generalized linear mixed models (GLMM), which in general makes more

efficient use of the data than linear regression.

Instead of inferring the selection gradients per se, we use a model of stabilizing se-

lection with a moving optimum, thus providing estimates of a number of parameters

appearing in theoretical models of fluctuating selection (Bull, 1987; Charlesworth, 1993;

Lande and Shannon, 1996; Bürger and Gimelfarb, 2002; Lande, 2009; Chevin, 2013; Tufto,

2015). This should make results of empirical studies more readily interpretable in terms

of these theoretical models, while the variance and autocorrelation of selection gradients

themselves generally are not sufficient to infer patterns of fluctuations of an optimum

phenotype (Chevin and Haller, 2014). In our approach, the assumption of stabilizing se-

lection can be removed simply by not including the quadratic term in equation (3), which

also allows comparing models with and without stabilizing selection (through likelihood-

ratio tests or using information criteria, as we did here). Also in line with most theory, we

modeled stabilizing selection as a Gaussian fitness function, which approximates well any

fitness function with an optimum when sufficiently close to the optimum (Lande, 1976)

as in Figure 4. In general, however, the Gaussian fitness function should not be seen as

a realistic representation of the actual fitness landscape, which may be better estimated

through non-parametric approaches such as cubic splines (Schluter, 1988; Morrissey and

Sakrejda, 2013). Rather, it is an idealized fitness function that allows quantitative com-

parison of patterns of fluctuating selection across studies, as long as stabilizing selec-

tion with a moving optimum is biologically meaningful. A perhaps useful analogy is the

Wright-Fisher population, which is an idealization that allows comparing the intensity

of drift across populations with different complex demographies, through the summary

parameter Ne.

Our simulations resulted in rather imprecise estimates of the autocorrelation in the

optimum phenotype, with large confidence intervals (Figure 2b)). This is because we

restricted our attention to the modest sample sizes and number of time points that

are typical of studies on organisms with intermediate to large generation times (mostly
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birds and large mammals) in (semi-)natural conditions. The precision for these estimates

cannot be increased by only increasing the sample size within time points, and more time

points are needed instead. For instance, even with perfect knowledge of the optimum at

each time point, the estimate of the temporal variance in the optimum (σ2
θ , or σ2

ε in the

case without an environmental covariate) has coefficient of variation
√

(2/(n− 1)), such

that n > 2/u2 − 1 time points are required in order for the coefficient of variation to

be below a given treshold u. This problem is further amplified by the uncertainty in the

estimate of each optimum. More precise estimation of patterns of fluctuating selection may

be obtained for species with shorter generations, such as those studied in experimental

evolution, allowing for measurements over a larger number of time points.

The results from our analysis of the Hoge Veluwe great tit data were partly in agree-

ment with previous findings, but also revealed new and intriguing patterns. We showed

that the optimum breeding time responds to spring temperature, which could be antici-

pated since the latter is a good predictor of the food peak date. However, in years where

the food peak date itself was measured, it was not a better predictor of the optimum than

spring temperature. Furthermore, we were able to show that the optimum laying date

undergoes temporally autocorrelated random fluctuations, beyond those caused by spring

temperature. These fluctuations may be caused for instance by other climatic variables

than temperatures, other spring food sources that are less dependent on the timing of bud

burst in trees, or winter conditions. A possible candidate driver of these fluctuations is

the number of sunspots, which has been shown to influence laying date independently of

mean spring temperature (Visser and Sanz, 2009), and may thus also affect selection on

this trait. Another plausible candidate is the height of the food peak, which determines

the total amount of food available in each year, and which strongly affects the number

of fledglings produced. It has also been noted that food peak height correlates with the

number of sunspots (Visser and Sanz, 2009). In models that assumed a constant time lag

between the optimum laying date and the food peak, we found that this lag was about

33 days, which is consistent with (although slightly lower than) what is known of the

biology of this population: egg laying takes about 9 days, incubation 12 days and hence
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it is optimal to have nestlings close to fledging (which is at day 16-18) at the food peak

(Visser et al., 1998, 2006; Reed et al., 2013b; Gienapp et al., 2013).

POSSIBLE EXTENSIONS

Here we focused for simplicity on selection on a individual trait. A multivariate statistical

model of stabilizing selection on multiple traits (analogue to the multiple linear regression

in Lande and Arnold (1983)) is straightforward to formulate in our framework. After

transformation of the GLMM, the fitness function becomes a multivariate Gaussian,

with orientation and shape determined by a symmetric matrix whose diagonal elements

measure stabilizing selection, and off-diagonal elements measure correlational selection

(Lande, 1979). In a stochastic environment, stationary fluctuations in the optimum would

then also be multivariate, characterized by the covariance matrix of the stationary joint

distribution of optima for all traits (rather than the single variance parameter used here),

and a non-symmetric cross-covariance matrix representing the autocovariance over one

time step (rather than the single autocorrelation parameter used here) (see e.g. appendix

in Chevin (2013)). In practice however, the number of parameters to estimate is likely

to become problematic. For k measured traits, the 3 matrices described above require

estimation of k(2k + 1) parameters in total. The slope of the k-dimensional optimum

relative to n environmental variables (environmental sensitivity of selection) would involve

kn additional parameters. Estimation of these parameters would require not only a large

number of time points, but also a huge sample size at each time point.

We focused on a single selection episode, acting either through a single fitness com-

ponent, or through an integrative measurement of lifetime fitness. A natural extension

of our method would be to combine multiple selection episodes, acting through differ-

ent fitness components. For instance in our study case, we could consider clutch failure

(causing zero-inflation in the distribution of fledgling number) as a separate episode of

selection, which may be correlated to some extent with the selection episode we focused

on above, based on the nonzero-inflated part of the distribution. More generally, it would

be useful to model selection operating through all possible vital rates (age-specific sur-
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vivals and fecundities), in an age-structured population. Several approaches have been

proposed to integrate different fitness components into measurements of selection, from

combining selection gradients measured in each selection episode (Arnold and Wade,

1984), to aster modeling of lifetime reproductive success (Shaw and Geyer, 2010), or ex-

plicit age-structured demographical models (Lande, 1982; van Tienderen, 2000; Engen

et al., 2012). Engen et al. (2011) showed that when (weak) stabilizing selection operates

on a trait through all vital rates in an age-structured population, the resulting overall

selection on this trait is well approximated by a single Gaussian function with width

and optimum that are averages of those at each age, weighted by the relevant reproduc-

tive values. Engen et al. (2012) further showed how to measure fluctuating selection in

an age-structured population, but assuming no autocorrelation, and focusing on linear

gradients. All these approaches could be combined with the present method in order to

measure autocorrelated fluctuations in age-specific optima, and a resulting single opti-

mum for overall selection. A likely outcome will be that overall selection through lifetime

fitness fluctuates less than selection at each episode (e.g. one breeding season), because

of a buffering of environmental fluctuations as individuals experience different optima

throughout their life. Note that a serious complication of such an approach would be that

optimum phenotypes (and more generally selection strengths) are likely to be correlated

across ages, especially if they depend on the same unobserved environmental variables.

Our method can be applied to analyze spatial (rather than temporal) variation in phe-

notypic selection, as long as there is no dispersal during selection. For one-dimensional

space (e.g., latitudinal or altitudinal transects), the analyses conducted above are read-

ily transposable, using spatial coordinates instead of time. The first-order autoregressive

process should be replaced by its continuous equivalent (an Ornstein-Uhlenbeck process),

where the autocorrelation over one step is replaced by a rate of exponential decay of

autocorrelation with distance. A tendency with space would then indicate a spatial cline

in the optimum, while the random process would estimate how the random component

of phenotypic selection varies (and correlates) across space. Spatio-temporal variation

in phenotypic selection would also be straightforward to analyze under the assumption
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that temporal and spatial effects act additively on the optimum. Such a model could

represent permanent differences between optimal egg-laying dates at different spatial

locations, arising for instance from topography or nutrient availability. Beyond this, anal-

ysis of spatio-temporal variation in selection (including the spatial scale of synchrony in

selection) would be more involved, and requires further developments.

Conclusion

We introduced an approach that connects empirical measurements of traits and fitness

across time to theoretical predictions for evolution under environmentally driven fluctu-

ating selection. Applications of this method and its future extensions to datasets from

natural populations should provide a more quantitative picture of the eco-evolutionary

consequences of randomly changing environments.
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