Show simple item record

dc.contributor.authorVandbakk, Kristine
dc.contributor.authorWelde, Boye
dc.contributor.authorHovstein, Andrea
dc.contributor.authorBaumgart, Julia Kathrin
dc.contributor.authorEttema, Gertjan
dc.contributor.authorKarlsen, Trine
dc.contributor.authorSandbakk, Øyvind
dc.date.accessioned2017-10-30T14:50:19Z
dc.date.available2017-10-30T14:50:19Z
dc.date.created2017-08-04T13:33:53Z
dc.date.issued2017
dc.identifier.issn1932-6203
dc.identifier.urihttp://hdl.handle.net/11250/2462956
dc.description.abstractThis study compared the effects of adding upper-body sprint-intervals or continuous double poling endurance training to the normal training on maximal upper-body strength and endurance capacity in female cross-country skiers. In total, 17 female skiers (age: 18.1±0.8yr, body mass: 60±7 kg, maximal oxygen uptake (VO2max): 3.30±0.37 L.min-1) performed an 8-week training intervention. Here, either two weekly sessions of six to eight 30-s maximal upper-body double poling sprint-intervals (SIG, n = 8) or 45–75 min of continuous low-to-moderate intensity double poling on roller skis (CG, n = 9) were added to their training. Before and after the intervention, the participants were tested for physiological and kinematical responses during submaximal and maximal diagonal and double poling treadmill roller skiing. Additionally, we measured maximal upper-body strength (1RM) and average power at 40% 1RM in a poling-specific strength exercise. SIG improved absolute VO2max in diagonal skiing more than CG (8% vs 2%, p<0.05), and showed a tendency towards higher body-mass normalized VO2max (7% vs 2%, p = 0.07). Both groups had an overall improvement in double poling peak oxygen uptake (10% vs 6% for SIG and CG) (both p<0.01), but no group-difference was observed. SIG improved 1RM strength more than CG (18% vs 10%, p<0.05), while there was a tendency for difference in average power at 40% 1RM (20% vs 14%, p = 0.06). Oxygen cost and kinematics (cycle length and rate) in double poling and diagonal remained unchanged in both groups. In conclusion, our study demonstrates that adding upper-body sprint-interval training is more effective than continuous endurance training in improving upper-body maximal strength and VO2max.nb_NO
dc.language.isoengnb_NO
dc.publisherPublic Library of Sciencenb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleEffects of upper-body sprint-interval training on strength and endurance capacities in female cross-country skiersnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.volume12nb_NO
dc.source.journalPLoS ONEnb_NO
dc.source.issue2nb_NO
dc.identifier.doi10.1371/journal.pone.0172706
dc.identifier.cristin1484231
dc.description.localcode© 2017 Vandbakk et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.nb_NO
cristin.unitcode194,65,25,0
cristin.unitcode194,65,30,0
cristin.unitnameInstitutt for sirkulasjon og bildediagnostikk
cristin.unitnameInstitutt for nevromedisin
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal