Show simple item record

dc.contributor.authorSletnes, Malin
dc.contributor.authorJelle, Bjørn Petter
dc.contributor.authorRisholt, Birgit Dagrun
dc.identifier.citationEnergy Procedia. 2017, 132 327-332.nb_NO
dc.description.abstractThe market share for fibre reinforced aerogel insulation materials is expected to increase as production costs are lowered, and in this context, the development of layered products with integrated aerogel is highly interesting. The effect of uniaxial compression and humidity on the thermal conductivity of commercially available aerogel insulation blankets were measured in order to assess the feasibility of integrating aerogel blankets with other building components. The thermal performance under uniaxial compression was measured by compressing commercially available aerogel blanket materials in a heat flow meter apparatus. Up to 11.5 % decrease in apparent thermal conductivity was observed at a compressive strain of 16 %, corresponding to an applied stress of approximately 22 kPa. The thermal insulation properties of the aerogel insulation blankets remained excellent within the range of compressive stress investigated in this study (up to about 40 kPa), making aerogel integration highly interesting for building components that will be used under compression. However, a 32 % increase in thermal conductivity was observed upon exposure to an atmosphere of 95 % relative humidity (RH). Thus, in order to widen the range of application for fibre reinforced aerogel insulation materials, further investigations should be conducted to understand and improve their tolerance to moisture.nb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.titleFeasibility Study of Novel Integrated Aerogel Solutionsnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.source.journalEnergy Procedianb_NO
dc.relation.projectNorges forskningsråd: 193830nb_NO
dc.description.localcode© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC-BY-NC-ND 4.0 license (
cristin.unitnameInstitutt for bygg- og miljøteknikk

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal