Behaviour of plated structures subjected to blast loading
Journal article, Peer reviewed
Published version
Permanent lenke
http://hdl.handle.net/11250/2455918Utgivelsesdato
2015Metadata
Vis full innførselSamlinger
Originalversjon
10.1051/epjconf/20159401015Sammendrag
An experimental investigation using a new shock tube facility to study blast-load effects on thin aluminium plates is presented. The shock tube is designed to expose materials and structures to extreme loading conditions, such as accidental explosions or terrorist attacks. The intensity of the loading in the present study was determined by the initial conditions of the compressed gas, i.e. volume and pressure, and the resulting loading on the target plate was compared to experimental data from explosive detonations found in the literature. The square plates were manufactured from a low-strength aluminium alloy and had an exposed area of 0.3 × 0.3 m2. Piezoelectric pressure sensors were used for pressure recordings and synchronized with two high-speed cameras operating at a frame rate of 21,000 fps in a stereoscopic setup to capture the dynamic response using a three-dimensional digital image correlation (3D-DIC) technique. The experiment showed that the shock tube is capable of recreating a loading similar to that of an unconfined far-field airblast, and worked as an easily controllable alternative to explosive detonations when studying the dynamic response of structures subjected to blast loading.