Vis enkel innførsel

dc.contributor.authorSverdrup-Thygeson, Jørgen
dc.contributor.authorKelasidi, Eleni
dc.contributor.authorPettersen, Kristin Ytterstad
dc.contributor.authorGravdahl, Jan Tommy
dc.date.accessioned2017-03-22T08:15:21Z
dc.date.available2017-03-22T08:15:21Z
dc.date.created2016-12-20T02:47:42Z
dc.date.issued2016
dc.identifier.citationAutonomous Underwater Vehicles (AUV), 2016 IEEE/OES, IEEE conference proceedings 2016 ISBN 978-1-5090-2442-1. s. 387-395nb_NO
dc.identifier.isbn978-1-5090-2442-1
dc.identifier.urihttp://hdl.handle.net/11250/2434929
dc.description.abstractAutonomous underwater vehicles (AUVs) have been used for environmental mapping and surveys of various kinds for some time. More recently, the AUVs have entered the domain of the remotely operated vehicles (ROVs) to tackle some of the lighter subsea operations, such as inspection, maintenance, and repair (IMR) and light intervention tasks. The successful transition to AUVs for inspection of subsea infrastructure has pushed the technology towards AUVs equipped with robotic arms. Some AUVs with attached manipulator arms have demonstrated autonomous light intervention, but the majority of such tasks are still carried out using tethered and expensive ROVs with support vessels. The underwater swimming manipulator (USM) presented in this paper, is a snake-like bio-inspired AUV with exceptional accessibility and flexibility, due to its slender, multi-articulated structure. In this paper, we discuss why the USM is an appropriate system for certain tasks that are normally carried out by conventional ROVs and AUVs. Furthermore, we address the topic of kinematic control of the USM to utilize the inherent redundancy. Finally, we present and make use of a newly developed and versatile simulation environment for USMs to assert the applicability of the USM for performing subsea inspections and light intervention.nb_NO
dc.language.isoengnb_NO
dc.publisherIEEEnb_NO
dc.relation.ispartofAutonomous Underwater Vehicles (AUV), 2016 IEEE/OES
dc.titleThe Underwater Swimming Manipulator - A Bio-Inspired AUVnb_NO
dc.typeChapternb_NO
dc.description.versionacceptedVersion
dc.source.pagenumber387-395nb_NO
dc.identifier.doi10.1109/AUV.2016.7778701
dc.identifier.cristin1415363
dc.relation.projectNorges forskningsråd: 223254nb_NO
dc.description.localcode© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.”nb_NO
cristin.unitcode194,63,25,0
cristin.unitnameInstitutt for teknisk kybernetikk
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel