• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Blar i Institutt for havromsoperasjoner og byggteknikk på tidsskrift 
  •   Hjem
  • Fakultet for ingeniørvitenskap (IV)
  • Institutt for havromsoperasjoner og byggteknikk
  • Blar i Institutt for havromsoperasjoner og byggteknikk på tidsskrift
  •   Hjem
  • Fakultet for ingeniørvitenskap (IV)
  • Institutt for havromsoperasjoner og byggteknikk
  • Blar i Institutt for havromsoperasjoner og byggteknikk på tidsskrift
JavaScript is disabled for your browser. Some features of this site may not work without it.

Blar i Institutt for havromsoperasjoner og byggteknikk på tidsskrift "IEEE Access"

  • 0-9
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • X
  • Y
  • Z
  • Æ
  • Ø
  • Å

Sorter på:

Rekkefølge:

Resultater:

Viser treff 1-8 av 8

  • Tittel
  • Utgivelsesdato
  • Registreringsdato
  • Forfatter
  • stigende
  • synkende
  • 5
  • 10
  • 20
  • 40
  • 60
  • 80
  • 100
    • A Language and Platform Independent Co-Simulation Framework Based on the Functional Mock-Up Interface 

      Hatledal, Lars Ivar; Styve, Arne; Hovland, Geir; Zhang, Houxiang (Journal article; Peer reviewed, 2019)
      The main goal of the Functional Mock-up Interface (FMI) standard is to allow the sharing of simulation models across tools. To accomplish this, FMI relies on a combination of XML-files and compiled C-code packaged in a zip ...
    • An Unsupervised Reconstruction-Based Fault Detection Algorithm for Maritime Components 

      Ellefsen, Andre; Bjørlykhaug, Emil Dale; Æsøy, Vilmar; Zhang, Houxiang (Journal article; Peer reviewed, 2019)
      In recent years, the reliability and safety requirements of ship systems have increased drastically. This has prompted a paradigm shift toward the development of prognostics and health management (PHM) approaches for these ...
    • Cyber Risk Perception in the Maritime Domain: A Systematic Literature Review 

      Larsen, Marie Haugli; Lund, Mass Soldal (Peer reviewed; Journal article, 2021)
      This paper aims to present an approach to investigate cyber risk perception with use of recognized psychological models, and to give an overview of state-of-the-art research within the field of cyber risk perception in ...
    • An effective ship control strategy for collision-free maneuver toward a dock 

      Shuai, Yonghui; Li, Guoyuan; Xu, jinshan; Zhang, Houxiang (Peer reviewed; Journal article, 2020)
      Ship maneuvering toward a dock is a hot research topic in the field of autonomous ships. How to realize autonomous low-speed maneuver to a designated location under environmental disturbances is the fundamental problem at ...
    • Mechanical design optimization of a 6DOF serial manipulator using genetic algorithm 

      Bjørlykhaug, Emil; Egeland, Olav (Journal article; Peer reviewed, 2018)
      Robots are becoming increasingly more common in the industry. In order to expand the use of robotic manipulators to complex tasks, a higher degree of tailoring of robots may be required. Tailoring of the mechanical design ...
    • A Novel Channel and Temporal-wise Attention in Convolutional Networks for Multivariate Time Series Classification 

      Cheng, Xu; Han, Peihua; Li, Guoyuan; Chen, Shengyong; Zhang, Houxiang (Peer reviewed; Journal article, 2020)
      Multivariate time series classification (MTSC) is a fundamental and essential research problem in the domain of time series data mining. Recently deep neural networks emerged as an end-to-end solution for MTSC and achieve ...
    • Optimizing CNN Hyperparameters for Mental Fatigue Assessment in Demanding Maritime Operations 

      Monteiro, Thiago Gabriel; Skourup, Charlotte; Zhang, Houxiang (Peer reviewed; Journal article, 2020)
      Human-related issues play an important role in accidents and causalities in demanding maritime operations. The industry lacks an approach capable of preventively assessing maritime operators' mental fatigue and awareness ...
    • Validation of Data-Driven Labeling Approaches Using a Novel Deep Network Structure for Remaining Useful Life Predictions 

      Ellefsen, Andre; Ushakov, Sergey; Æsøy, Vilmar; Zhang, Houxiang (Journal article; Peer reviewed, 2019)
      Today, most research studies that aim to predict the remaining useful life (RUL) of industrial components based on deep learning techniques are using piecewise linear (PwL) run-to-failure targets to model the degradation ...

      Kontakt oss | Gi tilbakemelding

      Personvernerklæring
      DSpace software copyright © 2002-2019  DuraSpace

      Levert av  Unit
       

       

      Bla i

      Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

      Min side

      Logg inn

      Kontakt oss | Gi tilbakemelding

      Personvernerklæring
      DSpace software copyright © 2002-2019  DuraSpace

      Levert av  Unit