• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for matematiske fag
  • Vis innførsel
  •   Hjem
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for matematiske fag
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Geodesics on Surfaces

Ingebrigtsen, Eirik
Master thesis
Thumbnail
Åpne
14803_FULLTEXT.pdf (6.133Mb)
14803_COVER.pdf (1.556Mb)
Permanent lenke
http://hdl.handle.net/11250/2402926
Utgivelsesdato
2016
Metadata
Vis full innførsel
Samlinger
  • Institutt for matematiske fag [1424]
Sammendrag
We study geodesics on surfaces in the setting of classical differential geometry. We define the curvature of curves and surfaces in three-space and use the fundamental forms of a surface to measure lengths, angles, and areas. We follow Riemann and adopt a more abstract approach, and use tensor notation to discuss Gaussian curvature, Gauss's Theorema Egregium, geodesic curves, and the Gauss-Bonnet theorem. Properties of geodesics are proven by variational methods, showing the connection between straightest and shortest for curves on surfaces. The notion of intrinsic and extrinsic properties is highlighted throughout.
Utgiver
NTNU

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit