• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for elkraftteknikk
  • View Item
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for elkraftteknikk
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

DC/DC Converters for Multi-terminal HVDC system for Integrating Offshore Wind Farms

Kavungal Kolparambath, Shihabudheen
Master thesis
Thumbnail
View/Open
12530_FULLTEXT.pdf (16.63Mb)
12530_COVER.pdf (234.4Kb)
URI
http://hdl.handle.net/11250/2368137
Date
2015
Metadata
Show full item record
Collections
  • Institutt for elkraftteknikk [1941]
Abstract
The development of far-offshore wind farms and other large-scale renewable energy sources, together with the increasing needs for long distance power transmission is resulting in more HVDC systems being integrated into the traditional AC power network. Due to the capability for operation in isolated AC grids, VSCs are becoming the preferred technology for HVDC systems. Additionally, VSC HVDC allows for more flexible power control within a network than the conventional LCC systems. Moreover, the need for flexible transmission capacity to balance fluctuating power generation from renewable sources over wide geographical areas combined with the corresponding potential benefits in a deregulated power market is expected to favour the concept of VSC based Multi-terminal HVDC system (MTDC).

MTDC provides enhanced reliability and functionality and reduces the cost and conversion losses. However, most HVDC transmission schemes are currently constructed as point-to point connections, and there is not yet any clear standardization of voltage levels. Thus, DC/DC converters will become necessary if existing or emerging HVDC links operating with different voltages and different configurations. i.e. monopolar and bipolar should later be interconnected into MTDC configurations. DC/DC converters might also be needed for power flow control in meshed MTDC grids.

The goal of this thesis is to summarize the requirements for DC/DC converters in HVDC applications and focus on the modelling and control of DC/DC converters for various applications. The modelling includes both switching and average models. Four types of DC/DC converters intended for different applications are modelled using MATLAB/ Simulink® platform. The functionality of the developed models are demonstrated by simulations in MTDC grid based on the CIGRÉ B4 DC grid test system.
Publisher
NTNU

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit