• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimized submerged batch fermentation strategy for systems scale studies of metabolic switching in Streptomyces coelicolor A3(2)

Wentzel, Alexander; Bruheim, Per; Øverby, Anders; Jakobsen, Øyvind Mejdell; Sletta, Håvard; Omara, Walid A.M.; Hodgson, David A.; Ellingsen, Trond Erling
Journal article, Peer reviewed
Thumbnail
Åpne
1752-0509-6-59.pdf (1.712Mb)
Permanent lenke
http://hdl.handle.net/11250/2358358
Utgivelsesdato
2012
Metadata
Vis full innførsel
Samlinger
  • Institutt for bioteknologi og matvitenskap [899]
  • Publikasjoner fra CRIStin - NTNU [20888]
Originalversjon
BMC Systems Biology 2012, 6(59):1-16   10.1186/1752-0509-6-59
Sammendrag
Background: Systems biology approaches to study metabolic switching in Streptomyces coelicolor A3(2) depend on

cultivation conditions ensuring high reproducibility and distinct phases of culture growth and secondary metabolite

production. In addition, biomass concentrations must be sufficiently high to allow for extensive time-series

sampling before occurrence of a given nutrient depletion for transition triggering. The present study describes for

the first time the development of a dedicated optimized submerged batch fermentation strategy as the basis for

highly time-resolved systems biology studies of metabolic switching in S. coelicolor A3(2).

Results: By a step-wise approach, cultivation conditions and two fully defined cultivation media were developed and

evaluated using strain M145 of S. coelicolor A3(2), providing a high degree of cultivation reproducibility and enabling

reliable studies of the effect of phosphate depletion and L-glutamate depletion on the metabolic transition to antibiotic

production phase. Interestingly, both of the two carbon sources provided, D-glucose and L-glutamate, were found to be

necessary in order to maintain high growth rates and prevent secondary metabolite production before nutrient

depletion. Comparative analysis of batch cultivations with (i) both L-glutamate and D-glucose in excess, (ii) L-glutamate

depletion and D-glucose in excess, (iii) L-glutamate as the sole source of carbon and (iv) D-glucose as the sole source of

carbon, reveal a complex interplay of the two carbon sources in the bacterium's central carbon metabolism.

Conclusions: The present study presents for the first time a dedicated cultivation strategy fulfilling the requirements for

systems biology studies of metabolic switching in S. coelicolor A3(2). Key results from labelling and cultivation

experiments on either or both of the two carbon sources provided indicate that in the presence of D-glucose,

L-glutamate was the preferred carbon source, while D-glucose alone appeared incapable of maintaining culture growth,

likely due to a metabolic bottleneck at the oxidation of pyruvate to acetyl-CoA.
Utgiver
BioMed Central
Tidsskrift
BMC Systems Biology

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit