Show simple item record

dc.contributor.advisorBoles, Steven Tyler
dc.contributor.advisorWrålsen, Benedikte
dc.contributor.authorEngenes, Ann-Malen
dc.contributor.authorHoftun, Ingeborg Kristensen
dc.contributor.authorStubrud, Hege Lindvik
dc.date.accessioned2024-07-02T17:21:41Z
dc.date.available2024-07-02T17:21:41Z
dc.date.issued2024
dc.identifierno.ntnu:inspera:233428908:233430633
dc.identifier.urihttps://hdl.handle.net/11250/3137451
dc.description.abstractBærekraftsrapportering er i dag et samtaleemne innen batteriindustrien. Den europeiske union (EU), oppdaterer kontinuerlig kravene til rapportering for bæreraftig batteriproduksjon. Det finnes flere retningslinjer for riktig utførelse av bærekraftsrapportering, deriblant Greenhouse Gas Protocol og Organisational Environmental Footprint Method. I tillegg har EU lansert European Sustainability Reporting Standards som snart vil være et krav å følge for batteriindustrien. Dagens bærekraftsrapportering har fokus på klima og drivhusgasser, der klima og drivhusgassfokuset alene ikke dekker innvirkningen batteriprodusenter har på miljøet. Denne bacheloroppgaven ønsker å undersøke alle konsekvenser batteriproduksjon har på klimaet og miljøet, og i den hensikt å avdekke hvilke kategorier som midtveis i livsløpet har størst miljøpåvirkningseffekt. Denne oppgaven er basert på metoden livsløpsanalyse, LCA. Tre typer litium-ion-batterier, NMC 811, LFP og LNMO har blitt studert gjennom Ecoinvent-databasen i programmet Simapro. For å analysere de 18 miljøindikatorene på både katode- og battericellenivå for hver batteritype, er ReCiPe 2016-metoden brukt. For sammenligning av katode er enheten en kg brukt, mens for sammenligning på cellenivå er enheten kWh. Ved sammenligning av de tre batteriene avdekket resultatene forskjeller mellom katode og battericelle for de tre batteritypene. Ved analyse av produksjon av en kg katode, viste LFP å ha lavest innvirkning innenfor de fleste av miljøindikatorene, mens LNMO hadde størst utslipp i de fleste kategoriene. På cellenivå var resultatene annerledes, der en kWh LFP hadde størst innvirkning i nesten alle kategorier og LNMO minst innvirkning i de fleste kategoriene. For både katode og battericelle har NMC 811 utslippstall som ligger mellom de to andre. De store forskjellene mellom LFP og LNMO kommer av variasjoner innenfor spesifikk energitetthet. LNMO har betydelig høyere spesifikk energitetthet enn LFP, noe som resulterer i at LNMO kan være fordelaktig når man sammenligner disse på kapasitetsnivå. Likevel, med ulike mengder utslippstall for de tre forskjellige batteriene viser de også liknende effektmønster. De miljøindikatorene som viser størst utslippstall for alle tre batteriene var human carcinogenic, terrestrial ecotoxicity, marine ecotoxicity og freshwater ecotoxicity. Siden disse fire indikatorene viser størst miljøpåvirkning, kan det være naturlig for batteriindustrien å rapportere på disse i tillegg til drivhusgasser. Ytterligere kan det også være nyttig å rapportere utslippsverdier innenfor indikatorene freshwater euthrophication og human non-carcinogenic toxicity. Disse to kategoriene viser ikke like store utslippstall, men er likevel betydelige nok til at de bør vurderes.
dc.description.abstractSustainability reporting today is a topic of conversation within the battery industry. The European Union is continuously updating requirements for sustainable batteries, and as such focuses on reporting within the industry. There are multiple guidelines on how sustainability reporting should be conducted, among others the Greenhouse Gas Protocol and the Organisational Environmental Footprint Method. Additionally, the European Union has released the European Sustainability Reporting Standards, which soon will be mandatory to follow for all manufacturers selling batteries to the European market. However, most of the sustainability reporting requirements today are focusing on climate accounting and greenhouse gases only. Despite new requirements being an advancement within sustainability reporting, greenhouse gas emissions alone will not cover the environmental impacts of battery manufacturing. In order to strive towards truly sustainable batteries, all significant emissions and impacts should be considered. This thesis intends to research the multiple environmental impacts related to battery manufacturing, in order to demonstrate which impacts are important to report on in the battery industry. The research conducted in this thesis is based on life cycle assessment methodology. Three lithium-ion battery chemistries, NMC 811, LFP and LNMO, have been studied through the Ecoinvent database in SimaPro. The ReCiPe 2016 method has been used to analyse 18 midpoint impact categories for each battery, both at cathode and cell level. For comparison, one kg of each cathode material and one kWh of battery cell capacity have been studied. When comparing the three battery types, there were differences between cathode results and battery cell results. In the analysis of one kg of cathode materials produced, LFP batteries showed the lowest impact in the majority of impact categories, while in many categories the LNMO cathode had the highest impact. However, at the cell level, the results were opposite. For one kWh of battery cell, the LFP cell had the highest impact in nearly all categories and the LNMO cell the lowest. For both cathode materials and the battery cell, NMC 811 illustrates impacts in the intermediate range. The opposing results between LFP and LNMO batteries, occur as a consequence of the large variation in specific energy density. As the LNMO battery cell has significantly higher specific energy than the LFP cell, LNMO provides more beneficial results when compared at capacity level. Nonetheless, despite the variation in amounts of emissions, all three battery types illustrated a similar pattern of impacts. The impact categories with significant emissions were consistent across all cathodes and battery cells examined. Human carcinogenic toxicity, terrestrial ecotoxicity, marine ecotoxicity and freshwater ecotoxicity were the midpoint impact categories deemed most significant for battery manufacturers. Due to the significant impacts in these categories, demonstrated by all three batteries studied, these four midpoint categories should be included alongside climate accounting in sustainability reporting for the battery industry. Additionally, the categories freshwater eutrophication and human non-carcinogenic toxicity could also be considered for reporting amongst battery manufacturers. These two categories may not show as large emissions, but are significant enough to acknowledge.
dc.languageeng
dc.publisherNTNU
dc.titleEmploying Life Cycle Assessment to Advance Sustainability Reporting in the Battery Industry
dc.typeBachelor thesis


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record