Vis enkel innførsel

dc.contributor.authorHarmon, Nicholas
dc.contributor.authorWang, Shunguo
dc.contributor.authorRychert, Catherine A.
dc.contributor.authorConstable, Steven
dc.contributor.authorKendall, J. Michael
dc.date.accessioned2024-06-18T12:40:52Z
dc.date.available2024-06-18T12:40:52Z
dc.date.created2021-08-14T19:32:17Z
dc.date.issued2021
dc.identifier.citationJournal of Geophysical Research (JGR): Solid Earth. 2021, 126 .en_US
dc.identifier.issn2169-9313
dc.identifier.urihttps://hdl.handle.net/11250/3134542
dc.description.abstractThe lithosphere-asthenosphere system is fundamental to our understanding of mantle convection and plate tectonics. The different sensitivities of seismic and electromagnetic methods can be used together to better constrain the properties of the system. Here, we re-examine the shear velocity model from Rayleigh waves in light of the magnetotelluric based resistivity models from the Passive Imaging of the Lithosphere Asthenosphere Boundary (PI-LAB) experiment near the equatorial Mid-Atlantic Ridge, with the goal of generating a structurally consistent velocity and resistivity model for the region. Cross-plots of the models suggest a linear or near-linear trend that is also in agreement with petrophysical predictions. We generate a new shear velocity model from the resistivity models based on petrophysical relationships. The new velocity model fits the phase velocity data, and the correlation coefficient between the shear velocity and resistivity models is increased. Much of the model can be predicted by expectations for a thermal half-space cooling model, although some regions require a combination of higher temperatures, volatiles, or partial melt. We use the petrophysical predictions to estimate the melt fraction, melt volatile content, and temperature structure of the asthenospheric anomalies. We find up to 4% melt, with the lowest resistivities and shear velocities explained by up to 20% water or 20% CO2 in the melt or ∼1% nearly pure sulfide melt, depending on the set of assumptions used. Melt is required in punctuated anomalies over broad depth ranges, and also in channels at the base of the lithosphere. Melt in the asthenosphere is dynamic, yet persistent on geologic timescales.en_US
dc.language.isoengen_US
dc.publisherWileyen_US
dc.relation.urihttps://github.com/ShunguoWang/ShunguoWang.github.io/blob/master/files/NTNU/Harmon_etal2021JGR.pdf
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleShear velocity inversion guided by resistivity structure from the PI-LAB Experiment for integrated estimates of partial melt in the mantleen_US
dc.title.alternativeShear velocity inversion guided by resistivity structure from the PI-LAB Experiment for integrated estimates of partial melt in the mantleen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber1-20en_US
dc.source.volume126en_US
dc.source.journalJournal of Geophysical Research (JGR): Solid Earthen_US
dc.source.issue8en_US
dc.identifier.doi10.1029/2021JB022202
dc.identifier.cristin1926015
dc.relation.projectNorges forskningsråd: 294404en_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal