dc.contributor.author | Myers, Adele | |
dc.contributor.author | Utpala, Saiteja | |
dc.contributor.author | Talbar, Shubham | |
dc.contributor.author | Sanborn, Sophia | |
dc.contributor.author | Shewmake, Christian | |
dc.contributor.author | Donnat, Claire | |
dc.contributor.author | Mathe, Johan | |
dc.contributor.author | Lupo, Umberto | |
dc.contributor.author | Sonthalia, Rishi | |
dc.contributor.author | Cui, Xinyue | |
dc.contributor.author | Szwagier, Tom | |
dc.contributor.author | Pignet, Arthur | |
dc.contributor.author | Bergsson, Andri | |
dc.contributor.author | Hauberg, Søren | |
dc.contributor.author | Nielsen, Dmitriy | |
dc.contributor.author | Sommer, Stefan | |
dc.contributor.author | Klindt, David | |
dc.contributor.author | Hermansen, Erik | |
dc.contributor.author | Vaupel, Melvin | |
dc.contributor.author | Dunn, Benjamin Adric | |
dc.contributor.author | Xiong, Jeffrey | |
dc.contributor.author | Aharony, Noga | |
dc.contributor.author | Noga, Aharony | |
dc.contributor.author | Pe’er, Itsik | |
dc.contributor.author | Ambellan, Felix | |
dc.contributor.author | Hanik, Martin | |
dc.contributor.author | Nava-Yazdani, Esfandiar | |
dc.contributor.author | von Tycowicz, Christoph | |
dc.contributor.author | Miolane, Nina | |
dc.date.accessioned | 2024-06-07T11:21:24Z | |
dc.date.available | 2024-06-07T11:21:24Z | |
dc.date.created | 2023-01-20T15:51:21Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Proceedings of Machine Learning Research (PMLR). 2022, 269-276. | en_US |
dc.identifier.issn | 2640-3498 | |
dc.identifier.uri | https://hdl.handle.net/11250/3133092 | |
dc.description.abstract | This paper presents the computational challenge on differential geometry and topology that was hosted within the ICLR 2022 workshop “Geometric and Topo- logical Representation Learning”. The competition asked participants to provide implementations of machine learning algorithms on manifolds that would respect the API of the open-source software Geomstats (manifold part) and Scikit-Learn (machine learning part) or PyTorch. The challenge attracted seven teams in its two month duration. This paper describes the design of the challenge and summarizes its main findings. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | JMLR | en_US |
dc.relation.uri | https://proceedings.mlr.press/v196/myers22a.html | |
dc.rights | Navngivelse 4.0 Internasjonal | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/deed.no | * |
dc.title | ICLR 2022 Challenge for Computational Geometry & Topology: Design and Results | en_US |
dc.title.alternative | ICLR 2022 Challenge for Computational Geometry & Topology: Design and Results | en_US |
dc.type | Peer reviewed | en_US |
dc.type | Journal article | en_US |
dc.description.version | acceptedVersion | en_US |
dc.rights.holder | Copyright © The authors and PMLR 2023 | en_US |
dc.source.pagenumber | 269-276 | en_US |
dc.source.journal | Proceedings of Machine Learning Research (PMLR) | en_US |
dc.identifier.cristin | 2112009 | |
cristin.ispublished | true | |
cristin.fulltext | postprint | |
cristin.qualitycode | 1 | |