Vis enkel innførsel

dc.contributor.authorTabib, Mandar Vasudeo
dc.contributor.authorSkaret, Kristoffer
dc.contributor.authorBruaset, Endre
dc.contributor.authorRasheed, Adil
dc.date.accessioned2024-05-31T09:04:40Z
dc.date.available2024-05-31T09:04:40Z
dc.date.created2023-10-20T13:20:23Z
dc.date.issued2023
dc.identifier.citationEngineering Proceedings. 2023, 39 (1), .en_US
dc.identifier.issn2673-4591
dc.identifier.urihttps://hdl.handle.net/11250/3132088
dc.description.abstractA computationally efficient predictive digital twin (DT) of a small-scale greenhouse needs an accurate and faster modelling of key variables such as the temperature field and flow field within the greenhouse. This involves: (a) optimally placing sensors in the experimental set-up and (b) developing fast predictive models. In this work, for a greenhouse set-up, the former requirement fulfilled first by identifying the optimal sensor locations for temperature measurements using the QR column pivoting on a tailored basis. Here, the tailored basis is the low-dimensional representation of hi-fidelity computational fluid dynamics (CFD) flow data, and these tailored basis are obtained using proper orthogonal decomposition (POD). To validate the method, the full temperature field inside the greenhouse is then reconstructed for an unseen parameter (inflow condition) using the temperature values from a few synthetic sensor locations in the CFD model. To reconstruct the flow-fields using a faster predictive model than the hi-fidelity CFD model, a long-short term memory (LSTM) method based on a reduced-order model (ROM) is used. The LSTM learns the temporal dynamics of coefficients associated with the POD-generated velocity basis modes. The LSTM-POD ROM model is used to predict the temporal evolution of velocity fields for our DT case, and the predictions are qualitatively similar to those obtained from hi-fidelity numerical models. Thus, the two data-driven tools have shown potential in enabling the forecasting and monitoring of key variables in a digital twin of a greenhouse. In future work, there is scope for improvements in the reconstruction accuracy by involving deep-learning-based corrective source term approaches.en_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleData-Driven Spatio-Temporal Modelling and Optimal Sensor Placement for a Digital Twin Set-Upen_US
dc.title.alternativeData-Driven Spatio-Temporal Modelling and Optimal Sensor Placement for a Digital Twin Set-Upen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber1-10en_US
dc.source.volume39en_US
dc.source.journalEngineering Proceedingsen_US
dc.source.issue1en_US
dc.identifier.doi10.3390/engproc2023039098
dc.identifier.cristin2186787
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal