Show simple item record

dc.contributor.advisorGruber, Andrea
dc.contributor.authorAannestad, Jonas Trygve
dc.date.accessioned2024-04-24T17:19:57Z
dc.date.available2024-04-24T17:19:57Z
dc.date.issued2023
dc.identifierno.ntnu:inspera:163243144:21973349
dc.identifier.urihttps://hdl.handle.net/11250/3128008
dc.description.abstractI denne avhandlingen gjennomføres en studie av turbulent flammer ved utblåsning ved hjelp av Large-Eddy Simulation (LES) i en bluff-body brenner. Avhandlingen har som mål å vurdere OpenFOAMs løser for turbulent reaktiv strømning sin evne til å gjenskape utblåsningsatferden til lean, forhåndsforblandet CH4-luftflamme og NH3/H2/N2-luftflamme, som er observert eksperimentelt. Eksperimentelt opplever flammene utblåsning ved ulike hastigheter, med en størrelsesorden forskjell, til tross for at de har nominelt identiske laminære flammekarakteristikker. Dette skyldes termodiffusive ustabiliteter forårsaket av H2 i blandingen, som akselererer flammefrontpropagasjonen. Dette resulterer i økt varmeutviklingshastighet og utblåsningsmotstand. I den numeriske studien ble Partially-Stirred Reactor-modellen brukt for å modellere turbulens-kjemi-interaksjonen, sammen med tre forskjellige reaksjonsmekanismer. Den numeriske oppsettet gjenskaper utblåsningshastigheten til CH4-luftflammen med en feilmargin på 10% i forhold til referanseekperimentet, mens NH3/H2/N2-luftflammen undervurderer utblåsningshastigheten med en størrelsesorden. Reaksjonsmekanismer viser seg å ha stor innvirkning, mens avhandlingen konkluderer med at de termodiffusive fysikkene til H2-blandingen ikke blir fanget opp av OpenFOAMs Fickianske molekyltransport.
dc.description.abstractIn this thesis, a Large-Eddy Simulation (LES) study of turbulent flames at blow-out taking place in a bluff-body burner is conducted. The thesis aims to assess the ability of OpenFOAM’s solver for turbulent reactive flow to recreate the blow-out behavior of lean, premixed CH4-air flame and NH3/H2/N2-air flame as observed experimentally. Experimentally, the flames experience blow-out at different velocities, differing by an order of magnitude, despite having nominally-identical laminar flame characteristics. This is due to thermodiffusive instabilities caused by H2 in the mixture, which accelerates flame front propagation. This results in increased heat release rate and blow-out resilience. In the numerical study, the Partially-Stirred Reactor model was employed to model turbulence-chemistry interaction, along with three different reaction mechanisms. The numerical setup recreates the blow-out velocity of CH4-air flame within 10% error of reference experiment, while the NH3/H2/N2-air flame underpredicts the blow-out velocity by an order of magnitude. Reaction mechanisms are shown to be very influential, while the thesis concludes that the thermo-diffusive physics of the H2 mixture is not captured by OpenFOAM’s Fickian molecular transport.
dc.languageeng
dc.publisherNTNU
dc.titleNumerical investigation of lean premixed ammonia/hydrogen/nitrogen-air flame at blow-out
dc.typeMaster thesis


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record