• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Unconventional growth of methane hydrates: A molecular dynamics and machine learning study

Shi, Qiao; Lin, Yanwen; Hao, Yongchao; Song, Zixuan; Zhou, Ziyue; Fu, Yuequn; Zhang, Zhisen; Wu, Jianyang
Peer reviewed, Journal article
Published version
Åpne
1-s2.0-S0360544223017310-main.pdf (Låst)
Permanent lenke
https://hdl.handle.net/11250/3119985
Utgivelsesdato
2023
Metadata
Vis full innførsel
Samlinger
  • Institutt for konstruksjonsteknikk [2630]
  • Publikasjoner fra CRIStin - NTNU [41955]
Originalversjon
Energy. 2023, 282 .   10.1016/j.energy.2023.128337
Sammendrag
Natural gas hydrate reservoirs in natural settings subjected to external driving forces are deformed and locally dissociated, while they reform due to endothermic dissociation reaction. Here we report a molecular dynamics (MD) and machine learning (ML) study of unconventional growth characteristics of methane hydrates (MH). MD results show that depending on the strain of MH substrate, methane clathrate hydrates grow via four distinct growth modes, in which diverse unconventional cages are critically involved. Interestingly, a novel new MH structure named as MH-VII composed of 51263, 51472 and 425861 polyhedral cages is discovered. Moreover, a long short-term memory (LSTM) neural network-based ML model using short-time MD information is developed to effectively predict the complex dynamic growth of MH in terms of clathrate cages and F4 order parameter. This work provides new insights and perspectives into the growth of clathrate hydrates, and as-developed LSTM-based ML model opens a critical pathway for exploring time-dependent behaviors of clathrate hydrates under complex conditions.
Utgiver
Elsevier
Tidsskrift
Energy
Opphavsrett
© Copyright 2023 Elsevier

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit