Vis enkel innførsel

dc.contributor.authorChaplain, G.J.
dc.contributor.authorGliozzi, A.S.
dc.contributor.authorDavies, B.
dc.contributor.authorUrban, David
dc.contributor.authorDescrovi, Emiliano
dc.contributor.authorBosia, F.
dc.contributor.authorCraster, R.V.
dc.date.accessioned2024-01-17T13:14:28Z
dc.date.available2024-01-17T13:14:28Z
dc.date.created2023-06-15T14:24:50Z
dc.date.issued2023
dc.identifier.citationApplied Physics Letters. 2023, 122 (22), .en_US
dc.identifier.issn0003-6951
dc.identifier.urihttps://hdl.handle.net/11250/3112197
dc.description.abstractA potential weakness of topological waveguides is that they act on a fixed narrow band of frequencies. However, by 3D printing samples from a photo-responsive polymer, we can obtain a device whose operating frequency can be fine-tuned dynamically using laser excitation. This greatly enhances existing static tunability strategies, typically based on modifying the geometry. We use a version of the classical Su–Schrieffer–Heeger model to demonstrate our approach.en_US
dc.language.isoengen_US
dc.publisherAmerican Institute of Physicsen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleTunable topological edge modes in Su-Schrieffer-Heeger arraysen_US
dc.title.alternativeTunable topological edge modes in Su-Schrieffer-Heeger arraysen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.source.pagenumber0en_US
dc.source.volume122en_US
dc.source.journalApplied Physics Lettersen_US
dc.source.issue22en_US
dc.identifier.doi10.1063/5.0152172
dc.identifier.cristin2154954
dc.relation.projectNorges teknisk-naturvitenskapelige universitet: 989454111en_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal