Vis enkel innførsel

dc.contributor.authorAasen, Ailo
dc.contributor.authorWilhelmsen, Øivind
dc.contributor.authorHammer, Morten
dc.contributor.authorReguera, David
dc.date.accessioned2024-01-11T15:46:13Z
dc.date.available2024-01-11T15:46:13Z
dc.date.created2023-03-30T12:51:52Z
dc.date.issued2023
dc.identifier.issn0021-9606
dc.identifier.urihttps://hdl.handle.net/11250/3111187
dc.description.abstractArguably, the main challenge of nucleation theory is to accurately evaluate the work of formation of a critical embryo in the new phase, which governs the nucleation rate. In Classical Nucleation Theory (CNT), this work of formation is estimated using the capillarity approximation, which relies on the value of the planar surface tension. This approximation has been blamed for the large discrepancies between predictions from CNT and experiments. In this work, we present a study of the free energy of formation of critical clusters of the Lennard-Jones fluid truncated and shifted at 2.5σ using Monte Carlo simulations, density gradient theory, and density functional theory. We find that density gradient theory and density functional theory accurately reproduce molecular simulation results for critical droplet sizes and their free energies. The capillarity approximation grossly overestimates the free energy of small droplets. The incorporation of curvature corrections up to the second order with the Helfrich expansion greatly remedies this and performs very well for most of the experimentally accessible regions. However, it is imprecise for the smallest droplets and largest metastabilities since it does not account for a vanishing nucleation barrier at the spinodal. To remedy this, we propose a scaling function that uses all relevant ingredients without adding fitting parameters. The scaling function reproduces accurately the free energy of the formation of critical droplets for the entire metastability range and all temperatures examined and deviates from density gradient theory by less than one kBT.en_US
dc.language.isoengen_US
dc.publisherAIP Publishing LLCen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleFree energy of critical droplets - From the binodal to the spinodalen_US
dc.title.alternativeFree energy of critical droplets - From the binodal to the spinodalen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber0en_US
dc.source.volume158en_US
dc.source.journalJournal of Chemical Physicsen_US
dc.source.issue11en_US
dc.identifier.doi10.1063/5.0142533
dc.identifier.cristin2138482
dc.relation.projectNorges forskningsråd: 262644en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal