Vis enkel innførsel

dc.contributor.authorFrankberg, Erkka J.
dc.contributor.authorLambai, Aloshious
dc.contributor.authorZhang, Jiahui
dc.contributor.authorKalikka, Janne
dc.contributor.authorKhakalo, Sergei
dc.contributor.authorPaladino, Boris
dc.contributor.authorCabrioli, Mattia
dc.contributor.authorMathews, Nidhin G.
dc.contributor.authorSalminen, Turkka
dc.contributor.authorHokka, Mikko
dc.contributor.authorAkola, Jaakko Eemeli
dc.contributor.authorKuronen, Antti
dc.contributor.authorLevänen, Erkki
dc.contributor.authorDi Fonzo, Fabio
dc.contributor.authorMohanty, Gaurav
dc.date.accessioned2024-01-11T11:41:47Z
dc.date.available2024-01-11T11:41:47Z
dc.date.created2023-10-30T13:50:45Z
dc.date.issued2023
dc.identifier.citationAdvanced Materials. 2023, .en_US
dc.identifier.issn0935-9648
dc.identifier.urihttps://hdl.handle.net/11250/3111067
dc.description.abstractOxide glasses are an elementary group of materials in modern society, but brittleness limits their wider usability at room temperature. As an exception to the rule, amorphous aluminum oxide (a-Al2O3) is a rare diatomic glassy material exhibiting significant nanoscale plasticity at room temperature. Here, it is shown experimentally that the room temperature plasticity of a-Al2O3 extends to the microscale and high strain rates using in situ micropillar compression. All tested a-Al2O3 micropillars deform without fracture at up to 50% strain via a combined mechanism of viscous creep and shear band slip propagation. Large-scale molecular dynamics simulations align with the main experimental observations and verify the plasticity mechanism at the atomic scale. The experimental strain rates reach magnitudes typical for impact loading scenarios, such as hammer forging, with strain rates up to the order of 1 000 s−1, and the total a-Al2O3 sample volume exhibiting significant low-temperature plasticity without fracture is expanded by 5 orders of magnitude from previous observations. The discovery is consistent with the theoretical prediction that the plasticity observed in a-Al2O3 can extend to macroscopic bulk scale and suggests that amorphous oxides show significant potential to be used as light, high-strength, and damage-tolerant engineering materials.en_US
dc.language.isoengen_US
dc.publisherWileyen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleExceptional Microscale Plasticity in Amorphous Aluminum Oxide at Room Temperatureen_US
dc.title.alternativeExceptional Microscale Plasticity in Amorphous Aluminum Oxide at Room Temperatureen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber0en_US
dc.source.journalAdvanced Materialsen_US
dc.identifier.doi10.1002/adma.202303142
dc.identifier.cristin2190034
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal