Vis enkel innførsel

dc.contributor.authorWinter, Adrian
dc.contributor.authorSokolova, Nadezda
dc.contributor.authorMorrison, Aiden J
dc.contributor.authorHasler, Oliver Kevin
dc.contributor.authorJohansen, Tor Arne
dc.date.accessioned2023-12-20T09:07:02Z
dc.date.available2023-12-20T09:07:02Z
dc.date.created2023-06-01T15:14:16Z
dc.date.issued2023
dc.identifier.citationIEEE - ION Position Location and Navigation Symposium. 2023, (C3: Signals of Opportunity-Based Systems), 1162-1169.en_US
dc.identifier.issn2153-358X
dc.identifier.urihttps://hdl.handle.net/11250/3108339
dc.description.abstractMany modern devices rely on satellite navigation for reliable, precise and ubiquitous localization. While this enables technological advances that have been unthinkable a few decades ago, it also has clear implications on safety and resilience. There have been many real-world incidents where through deliberate or accidental interference, as well as simply by design, satellite navigation has been shown to be unreliable. Consequences of encountering interference can range from anywhere between minor inconveniences to catastrophic failure with loss of life. For unmanned aerial vehicles (UAVs), the consequences will often be significant economical damages or injury, but the risk is not high enough to justify expensive backup navigation systems that are rarely used. This paper investigates a sensor build on low-cost commercial off-the-shelf (COTS) hardware that can be used in costal areas if localized global navigation satellite systems (GNSS) interference occurs. This sensor works by measuring the incoming angles of radio signals sent by maritime vessels as part of the Automatic Identification System (AIS) and triangulating the receiver’s position. The measurement precision of the hardware combination is evaluated from experiments with real-world signals. It is then shown in simulations that this achievable performance can lead to a significant improvement of the vehicle’s state estimation compared to pure dead reckoning in GNSS-outage scenarios.en_US
dc.description.abstractLow-Cost Angle of Arrival-Based Auxiliary Navigation System for UAV using Signals of Opportunityen_US
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectNavigasjonen_US
dc.subjectNavigationen_US
dc.titleLow-Cost Angle of Arrival-Based Auxiliary Navigation System for UAV using Signals of Opportunityen_US
dc.title.alternativeLow-Cost Angle of Arrival-Based Auxiliary Navigation System for UAV using Signals of Opportunityen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.subject.nsiVDP::Informasjons- og kommunikasjonsteknologi: 550en_US
dc.subject.nsiVDP::Information and communication technology: 550en_US
dc.source.pagenumber1162-1169en_US
dc.source.journalIEEE - ION Position Location and Navigation Symposiumen_US
dc.source.issueC3: Signals of Opportunity-Based Systemsen_US
dc.identifier.doi10.1109/PLANS53410.2023.10139950
dc.identifier.cristin2150928
dc.relation.projectNorges forskningsråd: 288634en_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal