Vis enkel innførsel

dc.contributor.authorFedotov, Daniil
dc.contributor.authorPaul, Alexander Christian
dc.contributor.authorPosocco, Paolo
dc.contributor.authorSantoro, Fabrizio
dc.contributor.authorGaravelli, Marco
dc.contributor.authorKoch, Henrik
dc.contributor.authorCoriani, Sonia
dc.contributor.authorImprota, Roberto
dc.date.accessioned2023-11-29T11:13:07Z
dc.date.available2023-11-29T11:13:07Z
dc.date.created2021-01-07T22:17:59Z
dc.date.issued2021
dc.identifier.citationJournal of Chemical Theory and Computation. 2021, 17 (3), 1638-1652.en_US
dc.identifier.issn1549-9618
dc.identifier.urihttps://hdl.handle.net/11250/3105200
dc.description.abstractWe present a computational study of the one-photon and excited-state absorption (ESA) from the two lowest energy excited states of uracil in the gas phase: an nπ* dark state (1n) and the lowest energy bright ππ* state (1π). The predictions of six different linear response electronic structure methods, namely, TD-CAM-B3LYP, EOM-CCSD, EOM-CC3, ADC(2), ADC(2)-x, and ADC(3) are critically compared. In general, the spectral shapes predicted by TD-CAM-B3LYP, EOM-CCSD, EOM-CC3, and ADC(3) are fairly similar, though the quality of TD-CAM-B3LYP slightly deteriorates in the high-energy region. By computing the spectra at some key structures on different potential energy surfaces (PES), that is, the Franck–Condon point, the 1n minimum, and structures representative of different regions of the 1π PES, we obtain important insights into the shift of the ESA spectra, following the motion of the wavepacket on the excited-state PES. Though 1π has larger ESA than 1n, some spectral regions are dominated by these latter signals. Aside from its methodological interest, we thus obtain interesting indications to interpret transient absorption spectra to disentangle the photoactivated dynamics of nucleobases.en_US
dc.language.isoengen_US
dc.publisherACS Publicationsen_US
dc.relation.urihttps://doi.org/10.26434/chemrxiv.13176554.v1
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleExcited State Absorption of Uracil in the Gas Phase: Mapping the Main Decay Paths by Different Electronic Structure Methodsen_US
dc.title.alternativeExcited State Absorption of Uracil in the Gas Phase: Mapping the Main Decay Paths by Different Electronic Structure Methodsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber1638-1652en_US
dc.source.volume17en_US
dc.source.journalJournal of Chemical Theory and Computationen_US
dc.source.issue3en_US
dc.identifier.doi10.1021/acs.jctc.0c01150
dc.identifier.cristin1867416
dc.relation.projectSigma2: NN2962Ken_US
dc.relation.projectEC/H2020/EC/H2020 765739en_US
dc.relation.projectNorges forskningsråd: Research Council of Norway (RCN) 275506en_US
dc.relation.projectNorges forskningsråd: Research Council of Norway (RCN) 263110en_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal