Vis enkel innførsel

dc.contributor.authorKristiansen, Stein
dc.contributor.authorNikolaidis, Konstantinos
dc.contributor.authorPlagemann, Thomas Peter
dc.contributor.authorGoebel, Vera Hermine
dc.contributor.authorTraaen, Gunn Marit
dc.contributor.authorØverland, Britt
dc.contributor.authorAkerøy, Lars
dc.contributor.authorHunt, Tove Elizabeth Frances
dc.contributor.authorLoennechen, Jan Pål
dc.contributor.authorSteinshamn, Sigurd Loe
dc.contributor.authorBendz, Christina
dc.contributor.authorAnfinsen, Ole-Gunnar
dc.contributor.authorGullestad, Lars
dc.contributor.authorAkre, Harriet
dc.date.accessioned2023-10-30T08:38:59Z
dc.date.available2023-10-30T08:38:59Z
dc.date.created2023-02-02T13:37:12Z
dc.date.issued2023
dc.identifier.issn2352-6483
dc.identifier.urihttps://hdl.handle.net/11250/3099301
dc.description.abstractSleep apnea is a common and severe sleep-related respiratory disorder. Since the symptoms of sleep apnea are often ambiguous, it is difficult for a physician to decide whether to prescribe a clinical diagnosis, i.e., polysomnography (PSG), which results in a large percentage of undiagnosed and very late diagnosed cases. To reduce the time to diagnosis we investigate whether sleep monitoring data collected with a low-cost strain gauge respiration belt (called Flow) and a smartphone can be used to estimate with machine learning (ML) the severity of a patient’s sleep apnea. The Flow belt and the Type III sleep monitor Nox T3 were used together by 29 patients for unattended sleep monitoring at home, resulting each in 235 hours of sleep data. Through experimental analysis, we found that Convolutional Neural Networks are best suited to analyze the Flow data, because they are most robust against the frequently occurring baseline issues and exhibit the best performance with an accuracy of 0.7609, sensitivity of 0.7833, and specificity of 0.7217. These results can be achieved even if the classifier is trained only on high-quality data from the Nox T3. Thus, there are good chances that future ML experiments with data from other low-cost respiration belts can benefit from existing open PSG datasets without new extensive data collection. On a low-end smartphone, the classifier needs approximately one second to analyze the sleep data from one night. The results demonstrate the potential of low-cost strain gauge belts, smartphones, and ML to enable large parts of the population to perform sleep apnea pre-screening at home.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S2352648323000016
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleA clinical evaluation of a low-cost strain gauge respiration belt and machine learning to detect sleep apneaen_US
dc.title.alternativeA clinical evaluation of a low-cost strain gauge respiration belt and machine learning to detect sleep apneaen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.volume27en_US
dc.source.journalSmart Healthen_US
dc.identifier.doi10.1016/j.smhl.2023.100373
dc.identifier.cristin2122341
dc.relation.projectNorges forskningsråd: 250239en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal