Vis enkel innførsel

dc.contributor.authorMicó-Amigo, M. Encarna
dc.contributor.authorBonci, Tecla
dc.contributor.authorParaschiv-Ionescu, Anisoara
dc.contributor.authorUllrich, Martin
dc.contributor.authorKirk, Cameron
dc.contributor.authorSoltani, Abolfazl
dc.contributor.authorKüderle, Arne
dc.contributor.authorGazit, Eran
dc.contributor.authorSalis, Francesca
dc.contributor.authorAlcock, Lisa
dc.contributor.authorAminian, Kamiar
dc.contributor.authorBecker, Clemens
dc.contributor.authorBertuletti, Stefano
dc.contributor.authorBrown, Philip
dc.contributor.authorBuckley, Ellen
dc.contributor.authorCantu, Alma
dc.contributor.authorCarsin, Anne-Elie
dc.contributor.authorCaruso, Marco
dc.contributor.authorCaulfield, Brian
dc.contributor.authorCereatti, Andrea
dc.contributor.authorChiari, Lorenzo
dc.contributor.authorD’Ascanio, Ilaria
dc.contributor.authorEskofier, Bjoern
dc.contributor.authorFernstad, Sara
dc.contributor.authorFroehlich, Marcel
dc.contributor.authorGarcia-Aymerich, Judith
dc.contributor.authorHansen, Clint
dc.contributor.authorHausdorff, Jeffrey M.
dc.contributor.authorHiden, Hugo
dc.contributor.authorHume, Emily
dc.contributor.authorKeogh, Alison
dc.contributor.authorKluge, Felix
dc.contributor.authorKoch, Sarah
dc.contributor.authorMaetzler, Walter
dc.contributor.authorMegaritis, Dimitrios
dc.contributor.authorMueller, Arne
dc.contributor.authorNiessen, Martijn
dc.contributor.authorPalmerini, Luca
dc.contributor.authorSchwickert, Lars
dc.contributor.authorScott, Kirsty
dc.contributor.authorSharrack, Basil
dc.contributor.authorSillén, Henrik
dc.contributor.authorSingleton, David
dc.contributor.authorVereijken, Beatrix
dc.contributor.authorVogiatzis, Ioannis
dc.contributor.authorYarnall, Alison J.
dc.contributor.authorRochester, Lynn
dc.contributor.authorMazzà, Claudia
dc.contributor.authorDel Din, Silvia
dc.date.accessioned2023-10-24T14:25:24Z
dc.date.available2023-10-24T14:25:24Z
dc.date.created2023-06-30T09:19:17Z
dc.date.issued2023
dc.identifier.citationJournal of NeuroEngineering and Rehabilitation. 2023, 20 (1), .en_US
dc.identifier.issn1743-0003
dc.identifier.urihttps://hdl.handle.net/11250/3098501
dc.description.abstractBackground Although digital mobility outcomes (DMOs) can be readily calculated from real-world data collected with wearable devices and ad-hoc algorithms, technical validation is still required. The aim of this paper is to comparatively assess and validate DMOs estimated using real-world gait data from six different cohorts, focusing on gait sequence detection, foot initial contact detection (ICD), cadence (CAD) and stride length (SL) estimates. Methods Twenty healthy older adults, 20 people with Parkinson’s disease, 20 with multiple sclerosis, 19 with proximal femoral fracture, 17 with chronic obstructive pulmonary disease and 12 with congestive heart failure were monitored for 2.5 h in the real-world, using a single wearable device worn on the lower back. A reference system combining inertial modules with distance sensors and pressure insoles was used for comparison of DMOs from the single wearable device. We assessed and validated three algorithms for gait sequence detection, four for ICD, three for CAD and four for SL by concurrently comparing their performances (e.g., accuracy, specificity, sensitivity, absolute and relative errors). Additionally, the effects of walking bout (WB) speed and duration on algorithm performance were investigated. Results We identified two cohort-specific top performing algorithms for gait sequence detection and CAD, and a single best for ICD and SL. Best gait sequence detection algorithms showed good performances (sensitivity > 0.73, positive predictive values > 0.75, specificity > 0.95, accuracy > 0.94). ICD and CAD algorithms presented excellent results, with sensitivity > 0.79, positive predictive values > 0.89 and relative errors < 11% for ICD and < 8.5% for CAD. The best identified SL algorithm showed lower performances than other DMOs (absolute error < 0.21 m). Lower performances across all DMOs were found for the cohort with most severe gait impairments (proximal femoral fracture). Algorithms’ performances were lower for short walking bouts; slower gait speeds (< 0.5 m/s) resulted in reduced performance of the CAD and SL algorithms. Conclusions Overall, the identified algorithms enabled a robust estimation of key DMOs. Our findings showed that the choice of algorithm for estimation of gait sequence detection and CAD should be cohort-specific (e.g., slow walkers and with gait impairments). Short walking bout length and slow walking speed worsened algorithms’ performances.en_US
dc.language.isoengen_US
dc.publisherBMCen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleAssessing real-world gait with digital technology? Validation, insights and recommendations from the Mobilise-D consortiumen_US
dc.title.alternativeAssessing real-world gait with digital technology? Validation, insights and recommendations from the Mobilise-D consortiumen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber0en_US
dc.source.volume20en_US
dc.source.journalJournal of NeuroEngineering and Rehabilitationen_US
dc.source.issue1en_US
dc.identifier.doi10.1186/s12984-023-01198-5
dc.identifier.cristin2159677
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal