Show simple item record

dc.contributor.advisorKorpås, Magnus
dc.contributor.advisorFlataker, Aurora Fosli
dc.contributor.advisorKlemets, Jonatan
dc.contributor.authorKvale, Ingrid Rodahl
dc.date.accessioned2023-09-26T17:20:06Z
dc.date.available2023-09-26T17:20:06Z
dc.date.issued2023
dc.identifierno.ntnu:inspera:146046472:34557722
dc.identifier.urihttps://hdl.handle.net/11250/3092157
dc.description.abstractNorge har som mål å oppnå en utslippsfri maritim flåte innen 2050. For å nå dette målet må ny teknologi og alternative drivstoff bli implementert i den maritime sektoren. Noen av de foreslåtte teknologiene er batteri til full elektrisk og hybride skip, samt benytte seg av de utslippsfrie drivstoffene hydrogen, ammonium og metanol. Om hydrogen, ammonium og metanol skal kunne regnes som 100 \% utslippsfrie må de produseres ved bruk av strøm fra fornybare kilder gjennom elektrolyse. Disse alternativene vil kreve mye strøm og det er viktig å gjennomføre gode analyser som kan forutse hvordan det økende behovet vil påvirke kraftnettet slik det er i dag. På grunn av mye usikkerhet i den maritime sektor finnes det ingen gode analyseverktøy for å beregne det kommende kraftbehovet til sektoren. Derfor er det i denne masteroppgaven utviklet en modell som kan beregne fremtidige energi-, effekt- og hydrogenbehov for en valgfri havn som implementerer en eller flere av de nevnte teknologiene og nullutslippsdrivstoffene. Modellen består av tre deler: "Lastmodell", "Strømprismodell" og "Optimaliseringsmodell", og er laget slik at den kan brukes på alle havner i Norge. Lastmodellen beregner timesbehovet for hydrogen, landstrøm og ladestrøm for de ulike skipstypene som er i havn. I tillegg er produksjonen fra lokale solcellepaneler inkludert. Optimeringsmodellen består av to optimeringsproblemer som begge benytter de beregnede lastbehovene i tillegg til strømpriser og nettleie, for å finne en optimal hydrogenproduksjon basert på å minimere de årlige driftskostnadene. "Driftsoptimalisering" optimaliserer driftskostnadene i en havn der kapasiteten til elektrolyse, transformator og hydrogenlager er begrenset, mens "Drifts- og investeringsoptimalisering" inkluderer å finne de gunstige størrelsene på elektrolyse, transformator og hydrogenlager for en havn ved å minimere investeringskostnadene i tillegg til driftskostnadene. I denne masteroppgaven brukes Oslo Havn som eksempel for å vise bruksområdene til den utviklede modellen i tillegg til å beregne fremtidig kraft-, energi- og hydrogenbehov for havnen. Det er simulert for seks ulike scenarier med ulik bruk av nullutslipps drivstoff og teknologier. I tillegg er det gjennomført en sensitivitetsanalyse for å teste effekten av de ulike systemparameterne inkludert i modellen. En oppsummering av resultatene viser at implementeringen av landstrøm for alle tilkoblede skip anslås å kreve ca. 7 GWh i løpet av et år, med en effekttopp på 3 MW. Denne implementeringen kan redusere CO2-utslippene i havnene med omtrent 4505 tonn. I et scenario der alle skipene enten er "grønn hybrid" eller bruker hydrogen som drivstoff, er det totale hydrogenbehovet beregnet til 18260 tonn per år med et totalt energibehov på 923 GWh og en effekttopp på 170 MW. Denne implementeringen kan redusere CO2-utslippene i havnene med ca. 215422 tonn. Det beregnede effektbehovet (170 MW) er 4,7 ganger større enn den eksisterende transformatorkapasiteten som befinner seg på Oslo havn. Dette indikerer at kapasiteten i både transformatoren og kabler må fornyes for å kunne håndtere et høyere effektbehov i fremtiden. Videre viser sensitivitetsanalysen i denne masteroppgaven at simuleringer med spotpriser fra tidligere år, samt en større investeringskostnad for elektrolysøren reduserer de simulerte effekttoppene. Resultatene fra denne studien bidrar til å gi en oversikt over den omtrentlige totale energi-, effekt- og hydrogenetterspørselen som kan oppstå i fremtiden. Hovedformålet med denne studien er derfor å øke bevisstheten blant nettplanleggere og bransjeaktører om den forventede etterspørselen, slik at de kan planlegge og tilpasse infrastrukturen og kapasiteten deretter.
dc.description.abstractNorway aims to achieve a zero-emission maritime fleet by 2050. To reach this goal it is predicted that shore power and green alternatives such as full-electric, plug-in hybrid electric, hydrogen, ammonia and methanol are implemented. All the mentioned options require electricity from renewable sources to be considered emission-free. However, a detailed power analysis regarding a zero-emission port is still not developed for the maritime sector. Therefore in this master thesis, a model is developed which considers the use of different green alternatives to compute the future energy, power, and hydrogen demand at a zero-emission port. The developed model consists of three parts ”Load Model”, ”Electricity Price Model”, and ”Optimization Model” and is designed in a generalized manner so that it can be applied to all ports in Norway. The ”Load Model” determines the total loads included in a zero-emission port, considering hydrogen, shore power, and charge power to full-electric and plug-in hybrid ships per hour throughout the year. In addition, the energy production from local solar panels is included. The ”Optimization Model” consists of two optimization problems, which utilize the calculated loads, in addition to the electricity prices and grid tariffs to estimate an optimal production of hydrogen based on minimizing annual costs of operation. The ”Optimal operation” optimizes the operation cost in a port where the capacities of electrolysis, transformer and hydrogen storage are limited, while ”Operation and investment optimization” includes finding the optimal sizes of electrolysis, transformer and hydrogen storage for a port by minimizing the investment cost in addition to the operation cost. In this master thesis, the port of Oslo is utilized as a case study to analyze the future power, energy and hydrogen demand for six different fuel mix scenarios. Furthermore, a sensitivity analysis is conducted to test the impact of the different system parameters. Summarizing the results, the implementation of shore power for all ships is estimated to require approximately 7 GWh for a year with a power peak reaching 3 MW. This implementation has the potential to reduce CO2 emissions in ports by approximately 4505 tons per year. Furthermore, in a scenario where all ships are either ”Green hybrids” or fueled with hydrogen, the total hydrogen demand for a year is calculated to be 18260 tons with a total energy demand of 923 GWh and a power peak reaching 170 MW. This implementation has the potential to reduce CO2 emissions in ports by approximately 215422 tons of CO2 per year. However, the predicted power demand is 4.7 times greater than the existing transformer capacity in the port of Oslo. This indicates that the capacity in both the transformers and cables needs to be renewed to handle a higher power demand in the future. Furthermore, the sensitivity analysis of this master thesis presents that the day-ahead prices of former years as well as a higher investment cost of electrolysis can reduce the simulated power peaks. The results obtained from this study contribute to providing an overview of the approximate total energy, power, and hydrogen demand that may emerge in the future. The primary purpose of this study is to raise awareness among stakeholders and industry participants regarding the projected demand, enabling them to plan and adapt their infrastructure and capacities accordingly. By doing so, they can better prepare for the anticipated changes and requirements in the maritime sector.
dc.languageeng
dc.publisherNTNU
dc.titlePrediction of power, energy and hydrogen demand in a zero-emission port
dc.typeMaster thesis


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record